메뉴 건너뛰기




Volumn 71, Issue 3, 2006, Pages 459-478

Sharp decay rates in parabolic and hyperbolic thermoelasticity

Author keywords

Classical thermoelasticity; Energy decay; Exponential stability; Hyperbolic; Numerical data; Rates of decay

Indexed keywords

ASYMPTOTIC STABILITY; MATHEMATICAL MODELS; NUMERICAL ANALYSIS;

EID: 33748067447     PISSN: 02724960     EISSN: 14643634     Source Type: Journal    
DOI: 10.1093/imamat/hxh110     Document Type: Article
Times cited : (18)

References (15)
  • 1
    • 33748087724 scopus 로고
    • Sulle conditione sotto le quali un' equazione a coefficienti reali ammette solo radici con parte reale negativa
    • Bompiani, E. (1911) Sulle conditione sotto le quali un' equazione a coefficienti reali ammette solo radici con parte reale negativa. Giornale Mat., 49, 33-39.
    • (1911) Giornale Mat. , vol.49 , pp. 33-39
    • Bompiani, E.1
  • 2
    • 0001194946 scopus 로고    scopus 로고
    • Hyperbolic thermoelasticity: A review of recent literature
    • Chandrasekharaiah, D. S. (1998) Hyperbolic thermoelasticity: A review of recent literature. Appl. Mech. Rev., 51, 705-729.
    • (1998) Appl. Mech. Rev. , vol.51 , pp. 705-729
    • Chandrasekharaiah, D.S.1
  • 3
    • 33748045055 scopus 로고    scopus 로고
    • The ultimates online reference for engineers
    • Efunda, Inc
    • Efunda, Inc (2002) The ultimates online reference for engineers. www.efunda.com.
    • (2002)
  • 4
    • 33748082221 scopus 로고    scopus 로고
    • The chemlab server
    • Chemlab.pe.maricopa.edu
    • Heilmann, C. (2002) The chemlab server. Chemlab.pe.maricopa.edu.
    • (2002)
    • Heilmann, C.1
  • 5
    • 33748036637 scopus 로고    scopus 로고
    • Physical propertise of semiconductors
    • Ioffe Physico-Technical Institute
    • Ioffe Physico-Technical Institute (2002) Physical propertise of semiconductors. www.ioffe.ru/bVa/NbM/bemicond.
    • (2002)
  • 7
    • 0004254827 scopus 로고    scopus 로고
    • π Monographs and Surveys in Pure and Applied Mathematics 112. Boca Raton: Chapman & Hall
    • Jiang, S. & Racke, R. (2000) Evolution equations in thermoelasticity. π Monographs and Surveys in Pure and Applied Mathematics 112. Boca Raton: Chapman & Hall.
    • (2000) Evolution Equations in Thermoelasticity
    • Jiang, S.1    Racke, R.2
  • 10
    • 0037170972 scopus 로고    scopus 로고
    • Thermoelasticity with second sound - Exponential stability in linear and non-linear 1-d
    • Racke, R. (2002) Thermoelasticity with second sound - exponential stability in linear and non-linear 1-d. Math. Methods Appl. Sci., 25, 409-441.
    • (2002) Math. Methods Appl. Sci. , vol.25 , pp. 409-441
    • Racke, R.1
  • 11
    • 0019664632 scopus 로고
    • Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity
    • Slemrod, M. (1981) Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity. Arch. Ration. Mech. Anal., 76, 97-133.
    • (1981) Arch. Ration. Mech. Anal. , vol.76 , pp. 97-133
    • Slemrod, M.1
  • 12
    • 0035632289 scopus 로고    scopus 로고
    • Coupled thermomechanical waves in hyperbolic thermoelasticity
    • Strunin, D. V., Melnik, R. V. N. & Roberts, A. J. (2001) Coupled thermomechanical waves in hyperbolic thermoelasticity. J. Therm. Stresses, 24, 121-140.
    • (2001) J. Therm. Stresses , vol.24 , pp. 121-140
    • Strunin, D.V.1    Melnik, R.V.N.2    Roberts, A.J.3
  • 13
    • 0035644660 scopus 로고    scopus 로고
    • Numerical solutions of thermoelastic wave problems by the method of characteristics
    • Sumi, N. (2001) Numerical solutions of thermoelastic wave problems by the method of characteristics. J. Therm. Stresses, 24, 509-530.
    • (2001) J. Therm. Stresses , vol.24 , pp. 509-530
    • Sumi, N.1
  • 14
    • 33748038655 scopus 로고    scopus 로고
    • WebElements perodic table
    • Winter, M. (2002) WebElements perodic table. www.webelements.com.
    • (2002)
    • Winter, M.1
  • 15
    • 0001592198 scopus 로고
    • Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems
    • Zheng, S. & Shen, W. (1981) Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems. Sci. Sin. Ser. A, 30, 1133-1149.
    • (1981) Sci. Sin. Ser. A , vol.30 , pp. 1133-1149
    • Zheng, S.1    Shen, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.