-
1
-
-
33244477413
-
Guarding a terrain by two watchtowers
-
New York, NY, USA. ACM Press
-
P. K. Agarwal, S. Bereg, O. Daescu, H. Kaplan, S. Ntafos, and B. Zhu. Guarding a terrain by two watchtowers. In Proc. 21st Annu. ACM Sympos. Computational Geometry, pages 346-355, New York, NY, USA, 2005. ACM Press.
-
(2005)
Proc. 21st Annu. ACM Sympos. Computational Geometry
, pp. 346-355
-
-
Agarwal, P.K.1
Bereg, S.2
Daescu, O.3
Kaplan, H.4
Ntafos, S.5
Zhu, B.6
-
3
-
-
0030406494
-
Red-blue intersection reporting for objects of non-constant size
-
P. Bozanis, N. Kitsios, C. Makris, and A. K. Tsakalidis. Red-blue intersection reporting for objects of non-constant size. Comput. J., 39(6):541-546, 1996.
-
(1996)
Comput. J.
, vol.39
, Issue.6
, pp. 541-546
-
-
Bozanis, P.1
Kitsios, N.2
Makris, C.3
Tsakalidis, A.K.4
-
4
-
-
0039173457
-
Cutting hyperplanes for divide-and-conquer
-
B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom., 9(2):145-158, 1993.
-
(1993)
Discrete Comput. Geom.
, vol.9
, Issue.2
, pp. 145-158
-
-
Chazelle, B.1
-
8
-
-
0031097276
-
Rectangular matrix multiplication revisited
-
D. Coppersmith. Rectangular matrix multiplication revisited. J. Complexity, 13(1):42-49, 1997.
-
(1997)
J. Complexity
, vol.13
, Issue.1
, pp. 42-49
-
-
Coppersmith, D.1
-
9
-
-
85023205150
-
Matrix multiplication via arithmetic progressions
-
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251-280, 1990.
-
(1990)
J. Symb. Comput.
, vol.9
, Issue.3
, pp. 251-280
-
-
Coppersmith, D.1
Winograd, S.2
-
10
-
-
0003772933
-
-
Springer-Verlag, Berlin
-
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. 2nd Edition, Springer-Verlag, Berlin, 2000.
-
(2000)
Computational Geometry: Algorithms and Applications. 2nd Edition
-
-
De Berg, M.1
Van Kreveld, M.2
Overmars, M.3
Schwarzkopf, O.4
-
11
-
-
0030506453
-
New lower bounds for hopcroft's problem
-
J. Erickson. New lower bounds for hopcroft's problem. Discrete and Computational Geometry, 16(4):389-418, 1996.
-
(1996)
Discrete and Computational Geometry
, vol.16
, Issue.4
, pp. 389-418
-
-
Erickson, J.1
-
12
-
-
33748039488
-
-
chapter 64, Computational geometry: generalized intersection searching. CRC Press
-
P. Gupta, R. Janardan, and M. Smid. Handbook of Data Structures and Applications, chapter 64, Computational geometry: generalized intersection searching, pages 64.1-64.17. CRC Press, 2005.
-
(2005)
Handbook of Data Structures and Applications
-
-
Gupta, P.1
Janardan, R.2
Smid, M.3
-
13
-
-
0000559550
-
Fast rectangular matrix multiplication and applications
-
X. Huang and V.Y. Pan. Fast rectangular matrix multiplication and applications. J. Complexity, 14(2):257-299, 1998.
-
(1998)
J. Complexity
, vol.14
, Issue.2
, pp. 257-299
-
-
Huang, X.1
Pan, V.Y.2
-
14
-
-
0036052732
-
An output-sensitive variant of the baby steps/giant steps determinant algorithm
-
E. Kaltofen. An output-sensitive variant of the baby steps/giant steps determinant algorithm. In Proc. Internat. Sympos. Symbolic Algeb. Comput. (ISSAC '02), 2002, pages 138-144.
-
(2002)
Proc. Internat. Sympos. Symbolic Algeb. Comput. (ISSAC '02)
, pp. 138-144
-
-
Kaltofen, E.1
-
16
-
-
0012524644
-
Fast context-free grammar parsing requires fast boolean matrix multiplication
-
L. Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM, 49(1):1-15, 2002.
-
(2002)
J. ACM
, vol.49
, Issue.1
, pp. 1-15
-
-
Lee, L.1
-
17
-
-
51249161633
-
Range searching with efficient hierarchical cuttings
-
J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom., 10(2):157-182, 1993.
-
(1993)
Discrete Comput. Geom.
, vol.10
, Issue.2
, pp. 157-182
-
-
Matoušek, J.1
-
18
-
-
4544337873
-
Learning functions of k relevant variables
-
E. Mossel, R. O'Donnell, and R. A. Servedio. Learning functions of k relevant variables. J. Comput. Syst. Sci., 69(1):421-434, 2004.
-
(2004)
J. Comput. Syst. Sci.
, vol.69
, Issue.1
, pp. 421-434
-
-
Mossel, E.1
O'Donnell, R.2
Servedio, R.A.3
-
19
-
-
34250487811
-
Gaussian elimination is not optimal
-
V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354-356, 1969.
-
(1969)
Numerische Mathematik
, vol.13
, pp. 354-356
-
-
Strassen, V.1
|