메뉴 건너뛰기




Volumn 411, Issue , 2006, Pages 340-352

[18] Interpreting Experimental Results Using Gene Ontologies

(1)  Beissbarth, Tim a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; CELL FUNCTION; DATA ANALYSIS; DNA MICROARRAY; EXPERIMENTATION; GENE CLUSTER; GENE EXPRESSION; GENE FUNCTION; GENETIC ANALYSIS; GENETICS; HIGH THROUGHPUT SCREENING; KNOWLEDGE; MICROARRAY ANALYSIS; MOLECULAR BIOLOGY; NOMENCLATURE; PRIORITY JOURNAL; REVIEW; STATISTICAL ANALYSIS; ANIMAL; COMPUTER PROGRAM; GENETIC DATABASE; HUMAN; METHODOLOGY;

EID: 33747890811     PISSN: 00766879     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S0076-6879(06)11018-6     Document Type: Review
Times cited : (48)

References (40)
  • 1
    • 1542399989 scopus 로고    scopus 로고
    • FatiGO: A web tool for finding significant associations of Gene Ontology terms with groups of genes
    • Al-Shahrour F., Diaz-Uriarte R., and Dopazo J. FatiGO: A web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20 (2004) 578-580
    • (2004) Bioinformatics , vol.20 , pp. 578-580
    • Al-Shahrour, F.1    Diaz-Uriarte, R.2    Dopazo, J.3
  • 3
    • 33747882889 scopus 로고    scopus 로고
    • Analysis of variance of microarray data
    • Ayroles J.F., and Gibson G. Analysis of variance of microarray data. Methods Enzymol. 411 (2006) 214-233
    • (2006) Methods Enzymol. , vol.411 , pp. 214-233
    • Ayroles, J.F.1    Gibson, G.2
  • 7
    • 3142665525 scopus 로고    scopus 로고
    • GOstat: Find statistically overrepresented Gene Ontologies within a group of genes
    • Beissbarth T., and Speed T.P. GOstat: Find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20 (2004) 1464-1465
    • (2004) Bioinformatics , vol.20 , pp. 1464-1465
    • Beissbarth, T.1    Speed, T.P.2
  • 8
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y., and Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. JRSS-B 57 (1995) 289-300
    • (1995) JRSS-B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 9
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependencies
    • Benjamini Y., and Yekutieli D. The control of the false discovery rate in multiple testing under dependencies. Anal. Stat. 29 (2001) 1165-1188
    • (2001) Anal. Stat. , vol.29 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 10
  • 11
    • 0029355897 scopus 로고
    • Establishing a human transcript map
    • Boguski M., and Schuler G. Establishing a human transcript map. Nature Genet. 10 (1995) 369-371
    • (1995) Nature Genet. , vol.10 , pp. 369-371
    • Boguski, M.1    Schuler, G.2
  • 14
    • 0036940312 scopus 로고    scopus 로고
    • How well do we understand the clusters found in microarray data?
    • Clare A., and King R.D. How well do we understand the clusters found in microarray data?. In Silico Biol. 2 (2002) 511-522
    • (2002) In Silico Biol. , vol.2 , pp. 511-522
    • Clare, A.1    King, R.D.2
  • 18
    • 0037263812 scopus 로고    scopus 로고
    • MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data
    • Doniger S., Salomonis N., Dahlquist K., Vranizan K., Lawlor S., and Conklin B. MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4 (2003) R7
    • (2003) Genome Biol. , vol.4
    • Doniger, S.1    Salomonis, N.2    Dahlquist, K.3    Vranizan, K.4    Lawlor, S.5    Conklin, B.6
  • 19
    • 33747888770 scopus 로고    scopus 로고
    • Analysis of a multifactor microarray study using Partek genomics solution
    • Downey T. Analysis of a multifactor microarray study using Partek genomics solution. Methods Enzymol. 411 (2006) 256-270
    • (2006) Methods Enzymol. , vol.411 , pp. 256-270
    • Downey, T.1
  • 20
    • 0042121055 scopus 로고    scopus 로고
    • Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate
    • Draghici S., Khatri P., Bhavsar P., Shah A., Krawetz S., and Tainsky M. Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res. 31 (2003) 3775-3781
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3775-3781
    • Draghici, S.1    Khatri, P.2    Bhavsar, P.3    Shah, A.4    Krawetz, S.5    Tainsky, M.6
  • 23
    • 33747883251 scopus 로고    scopus 로고
    • Clustering microarray data
    • Gollub J., and Sherlock G. Clustering microarray data. Methods Enzymol. 411 (2006) 194-213
    • (2006) Methods Enzymol. , vol.411 , pp. 194-213
    • Gollub, J.1    Sherlock, G.2
  • 24
    • 0034333112 scopus 로고    scopus 로고
    • GeneNest: Automated generation and visualization of gene indices
    • Haas S., Beissbarth T., Rivals E., Krause A., and Vingron M. GeneNest: Automated generation and visualization of gene indices. Trends Genet. 16 (2000) 521-523
    • (2000) Trends Genet. , vol.16 , pp. 521-523
    • Haas, S.1    Beissbarth, T.2    Rivals, E.3    Krause, A.4    Vingron, M.5
  • 25
    • 33747841898 scopus 로고    scopus 로고
    • Clustering methods for analyzing large data sets: Gonad development, a study case
    • Hennetin J., and Bellis M. Clustering methods for analyzing large data sets: Gonad development, a study case. Methods Enzymol. 411 (2006) 387-407
    • (2006) Methods Enzymol. , vol.411 , pp. 387-407
    • Hennetin, J.1    Bellis, M.2
  • 26
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6 (1979) 65-70
    • (1979) Scand. J. Stat. , vol.6 , pp. 65-70
    • Holm, S.1
  • 27
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M., Goto S., and Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (2000) 27-30
    • (2000) Nucleic Acids Res. , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2    Goto, S.3
  • 30
    • 27544472676 scopus 로고    scopus 로고
    • Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary
    • Mao X., Cai T., Olyarchuk J.G., and Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21 (2005) 3787-3793
    • (2005) Bioinformatics , vol.21 , pp. 3787-3793
    • Mao, X.1    Cai, T.2    Olyarchuk, J.G.3    Wei, L.4
  • 32
    • 33747885673 scopus 로고    scopus 로고
    • Bioconductor: An open source framework for bioinformatics and computational biology
    • Reimers M., and Carey V.J. Bioconductor: An open source framework for bioinformatics and computational biology. Methods Enzymol. 411 (2006) 119-134
    • (2006) Methods Enzymol. , vol.411 , pp. 119-134
    • Reimers, M.1    Carey, V.J.2
  • 33
    • 0141958996 scopus 로고    scopus 로고
    • Genomics. Microarrays: Guilt by association
    • Quackenbush J. Genomics. Microarrays: Guilt by association. Science 302 (2003) 240-241
    • (2003) Science , vol.302 , pp. 240-241
    • Quackenbush, J.1
  • 35
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M., Shalon D., Davis R.W., and Brown P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270 (1995) 467-470
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 36
    • 11944262819 scopus 로고
    • Multiple hypothesis testing
    • Shaffer J. Multiple hypothesis testing. Annu. Rev. Psychol. 46 (1995) 561-584
    • (1995) Annu. Rev. Psychol. , vol.46 , pp. 561-584
    • Shaffer, J.1
  • 37
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Article
    • Smyth G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. SAGMB. 3 (2004) 3 Article
    • (2004) SAGMB. , vol.3 , pp. 3
    • Smyth, G.K.1
  • 38
    • 33747878575 scopus 로고    scopus 로고
    • Using ontologies to annotate microarray experiments
    • Whetzel P.L., Parkinson H., and Stoecket C. Using ontologies to annotate microarray experiments. Methods Enzymol. 411 (2006) 325-339
    • (2006) Methods Enzymol. , vol.411 , pp. 325-339
    • Whetzel, P.L.1    Parkinson, H.2    Stoecket, C.3
  • 39
    • 13444269542 scopus 로고    scopus 로고
    • OntologyTraverser: An R package for GO analysis
    • Young A., Whitehouse N., Cho J., and Shaw C. OntologyTraverser: An R package for GO analysis. Bioinformatics 21 (2005) 275-276
    • (2005) Bioinformatics , vol.21 , pp. 275-276
    • Young, A.1    Whitehouse, N.2    Cho, J.3    Shaw, C.4
  • 40
    • 14844341080 scopus 로고    scopus 로고
    • Pathway and ontology analysis: Emerging approaches connecting transcriptome data and clinical endpoints
    • Yue L., and Reisdorf W.C. Pathway and ontology analysis: Emerging approaches connecting transcriptome data and clinical endpoints. Curr. Mol. Med. 5 (2005) 11-20
    • (2005) Curr. Mol. Med. , vol.5 , pp. 11-20
    • Yue, L.1    Reisdorf, W.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.