메뉴 건너뛰기




Volumn 27, Issue 1, 2006, Pages 49-77

Bootstrapping rule induction to achieve rule stability and reduction

Author keywords

Algorithm stability; Bootstrapping; Decision rules; Multidimensional scaling; Perioperative medicine; Rule abstraction; Rule induction; Rule similarity; Rule visualization

Indexed keywords

ALGORITHMS; ASYMPTOTIC STABILITY; BOUNDARY CONDITIONS; DECISION THEORY; EXPERT SYSTEMS; PERTURBATION TECHNIQUES;

EID: 33747879040     PISSN: 09259902     EISSN: 15737675     Source Type: Journal    
DOI: 10.1007/s10844-006-1626-z     Document Type: Article
Times cited : (11)

References (48)
  • 1
    • 0003704318 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science, Irvine, CA
    • Bay, S. D. (1999). The UCI KDD Archive, http://kdd.ics.uci.edu. University of California, Department of Information and Computer Science, Irvine, CA.
    • (1999) The UCI KDD Archive
    • Bay, S.D.1
  • 3
    • 0033862254 scopus 로고    scopus 로고
    • Building a large-scale perioperative anaesthesia outcome-tracking database: Methodology, implementation, and experiences from one provider within the German quality project
    • Bothner, U., Georgieff, M., & Schwilk, B. (2000). Building a large-scale perioperative anaesthesia outcome-tracking database: Methodology, implementation, and experiences from one provider within the German quality project. British Journal of Anaesthesia, 85, 271-280.
    • (2000) British Journal of Anaesthesia , vol.85 , pp. 271-280
    • Bothner, U.1    Georgieff, M.2    Schwilk, B.3
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a). Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L. (1996b). Heuristics of instability and stabilization in model selection. Annals of Statistics, 24, 2350-2383.
    • (1996) Annals of Statistics , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 7
    • 33747886839 scopus 로고    scopus 로고
    • Leiden, The Netherlands: Leiden University
    • Busing, F. (2001). PROXSCAL. http://www.fsw.leidenuniv.nl/www/w3_ment/ medewerkers/busing/ PROXSCAL.HTM. Leiden, The Netherlands: Leiden University.
    • (2001) PROXSCAL
    • Busing, F.1
  • 9
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-283.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 11
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 1-26.
    • (1979) The Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 14
    • 0028369320 scopus 로고
    • Overcoming process delays with decision tree induction
    • Evans, B., & Fisher, D. (1994). Overcoming process delays with decision tree induction. IEEE Expert, 9, 60-66.
    • (1994) IEEE Expert , vol.9 , pp. 60-66
    • Evans, B.1    Fisher, D.2
  • 15
    • 3242768996 scopus 로고    scopus 로고
    • Using decision tree induction to minimize process delays in the printing industry
    • Oxford, UK: Oxford University Press
    • Evans, B., & Fisher, D. (2002). Using decision tree induction to minimize process delays in the printing industry. In Handbook of data mining and knowledge discovery, (pp. 874-881). Oxford, UK: Oxford University Press.
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 874-881
    • Evans, B.1    Fisher, D.2
  • 17
    • 2342622786 scopus 로고    scopus 로고
    • Leave-one-out error, stability, and generalization of voting combinations of classifiers
    • Evgeniou, T., Pontil, M., & Elisseeff, A. (2004). Leave-one-out error, stability, and generalization of voting combinations of classifiers. Machine Learning, 55, 71-97.
    • (2004) Machine Learning , vol.55 , pp. 71-97
    • Evgeniou, T.1    Pontil, M.2    Elisseeff, A.3
  • 20
    • 0026584453 scopus 로고
    • Multicenter study of general anesthesia III. Predictors of severe perioperative adverse outcomes
    • Forrest, J. B., Rehder, K., Cahalan, M. K., & Goldsmith, C. H. (1992). Multicenter study of general anesthesia III. Predictors of severe perioperative adverse outcomes. Anesthesiology, 76, 3-15.
    • (1992) Anesthesiology , vol.76 , pp. 3-15
    • Forrest, J.B.1    Rehder, K.2    Cahalan, M.K.3    Goldsmith, C.H.4
  • 21
  • 24
    • 33747880257 scopus 로고
    • The estimation of probabilities: An essay on modern bayesian methods
    • Cambridge, MA: MIT Press
    • Good, I. J. (1965). The Estimation of Probabilities: An Essay on Modern Bayesian Methods. Research Monograph 30. Cambridge, MA: MIT Press.
    • (1965) Research Monograph , vol.30
    • Good, I.J.1
  • 25
    • 0001330098 scopus 로고
    • A general coefficient of similarity and some of its properties
    • Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 857-872.
    • (1971) Biometrics , vol.27 , pp. 857-872
    • Gower, J.C.1
  • 26
    • 0346580105 scopus 로고    scopus 로고
    • The vanderbilt perioperative information management system forms foundation for outcomes management
    • Nashville, TN. Philadelphia, PA: Hanley and Belfus Inc.
    • Higgins, M. S., Beattie, C., St. Jaques, P., Patel, N., Yarborough, J., & Tsai, Y.S. (1997). The Vanderbilt Perioperative Information Management System Forms Foundation for Outcomes Management. In AMIA Annual Fall Symposium, Nashville, TN: (pp. 948). Philadelphia, PA: Hanley and Belfus Inc.
    • (1997) AMIA Annual Fall Symposium , pp. 948
    • Higgins, M.S.1    Beattie, C.2    St. Jaques, P.3    Patel, N.4    Yarborough, J.5    Tsai, Y.S.6
  • 28
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity check bounds for leave-one-out cross validation bounds
    • Kearns, M., & Ron, D. (1999). Algorithmic stability and sanity check bounds for leave-one-out cross validation bounds. Neural Computation, 11, 1427-1453.
    • (1999) Neural Computation , vol.11 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 31
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30, 195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 32
    • 3142674150 scopus 로고    scopus 로고
    • Almost-everywhere algorithmic stability and generalization error
    • San Francisco, CA: Morgan Kaufmann
    • Kutin, S., & Niyogi, P. (2002). Almost-everywhere algorithmic stability and generalization error. In Proceedings of the 18th Conference on Uncertainty in AI, (pp. 275-282). San Francisco, CA: Morgan Kaufmann.
    • (2002) Proceedings of the 18th Conference on Uncertainty in AI , pp. 275-282
    • Kutin, S.1    Niyogi, P.2
  • 34
    • 0001161341 scopus 로고
    • Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis
    • Michalski, R. S., & Chilausky, R. (1980). Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4, 125-160.
    • (1980) International Journal of Policy Analysis and Information Systems , vol.4 , pp. 125-160
    • Michalski, R.S.1    Chilausky, R.2
  • 37
    • 33747888717 scopus 로고    scopus 로고
    • Framework for a generic knowledge discovery toolkit
    • Berlin: Springer-Verlag
    • Riddle, P., & Fresnedo, R. N. D. (1996). Framework for a generic knowledge discovery toolkit. In Learning From Data: AI and Statistics V, (pp. 341-353). Berlin: Springer-Verlag.
    • (1996) Learning from Data: AI and Statistics V , pp. 341-353
    • Riddle, P.1    Fresnedo, R.N.D.2
  • 38
    • 0028202408 scopus 로고
    • Representation design and brute-force induction in a Boeing manufacturing domain
    • Riddle, P., Segal, R., & Etzioni, O. (1994). Representation design and brute-force induction in a Boeing manufacturing domain. Applied Artificial Intelligence, 8, 125-147.
    • (1994) Applied Artificial Intelligence , vol.8 , pp. 125-147
    • Riddle, P.1    Segal, R.2    Etzioni, O.3
  • 39
    • 28944454174 scopus 로고    scopus 로고
    • PhD Dissertation. University of Washington, Department of Computer Science, Seattle, WA
    • Segal, R. B. (1997). Machine Learning as Massive Search. PhD Dissertation. University of Washington, Department of Computer Science, Seattle, WA.
    • (1997) Machine Learning As Massive Search
    • Segal, R.B.1
  • 42
    • 0002947110 scopus 로고
    • Rule induction using information theory
    • Cambridge, MA: MIT Press
    • Smyth, P., & Goodman, R. M. (1991). Rule induction using information theory. In Knowledge Discovery in Databases, (pp. 159-176). Cambridge, MA: MIT Press.
    • (1991) Knowledge Discovery in Databases , pp. 159-176
    • Smyth, P.1    Goodman, R.M.2
  • 43
    • 33747888817 scopus 로고
    • Some standard tests of statistical hypotheses
    • New York, NY: Harcourt Brace Jovanovich, Inc.
    • Strait, P. T. (1983). Some standard tests of statistical hypotheses. In A First Course in Probability and Statistics with Applications, (pp. 410-422). New York, NY: Harcourt Brace Jovanovich, Inc.
    • (1983) A First Course in Probability and Statistics with Applications , pp. 410-422
    • Strait, P.T.1
  • 46
    • 0001860949 scopus 로고
    • Bias and the quantification of stability
    • Turney, P. (1995). Bias and the quantification of stability. Machine Learning, 20, 23-33.
    • (1995) Machine Learning , vol.20 , pp. 23-33
    • Turney, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.