-
1
-
-
33747884147
-
-
R. Agrawal, R. Srikant. Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Databases, Santiago, Chile, 1994, pp. 487-499.
-
-
-
-
2
-
-
34247340013
-
-
M. Antonie, O.R. Zaiane. Mining positive and negative association rules: an approach for confined rules. In: European Conference on Principles and Practice of Knowledge Discovery in Databases, 2004, pp. 27-38.
-
-
-
-
3
-
-
0031698969
-
-
A.Savasere, E.Omiecinski, S.B. Navathe. Mining for strong negative associations in a large database of customer transactions. In: Proceedings of International Conference on Data Engineering ICDE98, 1998, pp 494-502.
-
-
-
-
5
-
-
23044517681
-
Constraint-based rule mining in large, dense database
-
Bayardo R., Agrawal R., and Gunopulos D. Constraint-based rule mining in large, dense database. Data Min. Knowl. Disc. J. 4 2/3 (2000) 217-240
-
(2000)
Data Min. Knowl. Disc. J.
, vol.4
, Issue.2-3
, pp. 217-240
-
-
Bayardo, R.1
Agrawal, R.2
Gunopulos, D.3
-
6
-
-
33747884877
-
-
E.K.C. Blake and C.J. Merz. UCI repository of machine learning databases, http://www.ics.uci.edu/≫mlearn/MLRepository.html, 1998.
-
-
-
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
85015191605
-
-
P. Clark, R. Boswell. Rule induction with CN2: Some recent improvements. In: Machine Learning-EWSL-91, 1991, pp. 151-163.
-
-
-
-
9
-
-
34249966007
-
The CN2 induction algorithm
-
Clark P., and Niblett T. The CN2 induction algorithm. Mach. Learn. 3 4 (1989) 261-283
-
(1989)
Mach. Learn.
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
10
-
-
33747892761
-
-
Y. Freund, R.E. Schapire. Experiments with a new boosting algorithm. In: International Conference on Machine Learning, 1996, pp. 148-156.
-
-
-
-
11
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comp. Syst. Sci. 5 1 (1997) 119-139
-
(1997)
J. Comp. Syst. Sci.
, vol.5
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
12
-
-
2442449952
-
Mining frequent patterns without candidate generation: a frequent-pattern tree approach
-
Han J., Pei J., Yin Y., and Mao R. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. J. (2004) 53-87
-
(2004)
Data Min. Knowl. Disc. J.
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
13
-
-
84942772223
-
-
F. Hussain, H. Liu, E. Suzuki, H. Lu. Exception rule mining with a relative interestingness measure. In: Pacific-Asia Conference on Methodologies for Knowledge Discovery and Data Mining (PAKDD 00), LNCS, 2000, pp 86-97.
-
-
-
-
14
-
-
0036722344
-
Mining the optimal class association rule set
-
Li J., Shen H., and Topor R. Mining the optimal class association rule set. Knowl-Based Syst. 15 7 (2002) 399-405
-
(2002)
Knowl-Based Syst.
, vol.15
, Issue.7
, pp. 399-405
-
-
Li, J.1
Shen, H.2
Topor, R.3
-
16
-
-
33747878927
-
-
B. Liu, W. Hsu, Y. Ma. Integrating classification and association rule mining. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), 1998, pp. 27-31.
-
-
-
-
17
-
-
84974710130
-
-
B. Liu, Y. Ma, C. Wong. Improving an association rule based classifier. In: Fourth European Conference on Principles and Practice of Knowledge Discovery in Databases PKDD, 2000, pp. 504-509.
-
-
-
-
18
-
-
33747875662
-
-
R. Michalski, I. Mozetic, J. Hong, N. Lavrac. The AQ15 inductive learning system: an overview and experiments. In: Proceedings of IMAL 1986, Orsay, 1986. University de Paris-Sud.
-
-
-
-
20
-
-
3843055627
-
Efficient mining of both positive and negative association rules
-
Wu X., Zhang C., and Zhang S. Efficient mining of both positive and negative association rules. ACM T. Inform. Syst. 22 3 (2004) 381-405
-
(2004)
ACM T. Inform. Syst.
, vol.22
, Issue.3
, pp. 381-405
-
-
Wu, X.1
Zhang, C.2
Zhang, S.3
-
21
-
-
33747884262
-
-
X. Yin, J. Han. CPAR: Classification based on predictive association rules. In: Proceedings of 2003 SIAM International Conference on Data Mining (SDM'03), 2003.
-
-
-
-
22
-
-
84883861471
-
-
X. Yuan, B.P. Buckles, Z. Yuan, J. Zhang. Mining negative association rules. In: Proceedings of the Seventh IEEE Symposium on Computers and Communications, 2002, pp. 623-628.
-
-
-
|