메뉴 건너뛰기




Volumn 418, Issue 1, 2006, Pages 153-160

Inequalities between ∥f(A + B)∥ and ∥f(A) + f(B)∥

Author keywords

Concave function; Convex function; Functional calculus; Inequality; Operator monotone function; Positive semidefinite matrix; Unitarily invariant norm

Indexed keywords

COMPUTATIONAL COMPLEXITY; FUNCTION EVALUATION; FUNCTIONS; MATHEMATICAL OPERATORS; PROBLEM SOLVING;

EID: 33747851450     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.laa.2006.01.028     Document Type: Article
Times cited : (50)

References (8)
  • 1
    • 0033266641 scopus 로고    scopus 로고
    • Norm inequalities related to operator monotone functions
    • Ando T., and Zhan X. Norm inequalities related to operator monotone functions. Math. Ann. 315 (1999) 771-780
    • (1999) Math. Ann. , vol.315 , pp. 771-780
    • Ando, T.1    Zhan, X.2
  • 2
    • 0037706796 scopus 로고    scopus 로고
    • Weak majorization inequalities and convex functions
    • Aujla J.S., and Silva F.C. Weak majorization inequalities and convex functions. Linear Algebra Appl. 369 (2003) 217-233
    • (2003) Linear Algebra Appl. , vol.369 , pp. 217-233
    • Aujla, J.S.1    Silva, F.C.2
  • 4
    • 10044264312 scopus 로고    scopus 로고
    • Clarkson inequalities with several operators
    • Bhatia R., and Kittaneh F. Clarkson inequalities with several operators. Bull. London Math. Soc. 36 (2004) 820-832
    • (2004) Bull. London Math. Soc. , vol.36 , pp. 820-832
    • Bhatia, R.1    Kittaneh, F.2
  • 7
    • 20144369631 scopus 로고    scopus 로고
    • Inequalities between f(∥A∥) and ∥f({divides}A{divides})∥
    • Drnovšek R., and Kosem T. Inequalities between f(∥A∥) and ∥f({divides}A{divides})∥. Math. Inequal. Appl. 8 1 (2005) 1-6
    • (2005) Math. Inequal. Appl. , vol.8 , Issue.1 , pp. 1-6
    • Drnovšek, R.1    Kosem, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.