메뉴 건너뛰기




Volumn 25, Issue 2-3, 2006, Pages 385-408

Monte Carlo likelihood estimation for three multivariate stochastic volatility models

Author keywords

Importance sampling; Monte Carlo likelihood; Stochastic volatility

Indexed keywords


EID: 33747809011     PISSN: 07474938     EISSN: 15324168     Source Type: Journal    
DOI: 10.1080/07474930600712848     Document Type: Article
Times cited : (9)

References (38)
  • 1
    • 0034413190 scopus 로고    scopus 로고
    • Bayesian dynamic factor models and portfolio allocation
    • Aguilar, O., West, M. (2000). Bayesian dynamic factor models and portfolio allocation. J. Business and Economic Statist. 18:338-357.
    • (2000) J. Business and Economic Statist. , vol.18 , pp. 338-357
    • Aguilar, O.1    West, M.2
  • 3
    • 42449156579 scopus 로고
    • Generalised autoregressive conditional heteroskedasticity
    • Bollerslev, T. (1986). Generalised autoregressive conditional heteroskedasticity. J. Econometrics 51:307-327.
    • (1986) J. Econometrics , vol.51 , pp. 307-327
    • Bollerslev, T.1
  • 4
    • 33747789955 scopus 로고    scopus 로고
    • Analysis of high dimensional multivariate stochastic volatility models
    • forthcoming
    • Chib, S., Nardari, F., Shephard, N. (2006). Analysis of high dimensional multivariate stochastic volatility models. J. Econometrics, forthcoming.
    • (2006) J. Econometrics
    • Chib, S.1    Nardari, F.2    Shephard, N.3
  • 5
    • 43949160158 scopus 로고
    • Stochastic volatility in asset prices: Estimation with simulated maximum likelihood
    • Danielsson, J. (1994). Stochastic volatility in asset prices: estimation with simulated maximum likelihood. J. Econometrics 61:375-400.
    • (1994) J. Econometrics , vol.61 , pp. 375-400
    • Danielsson, J.1
  • 6
    • 0005868459 scopus 로고    scopus 로고
    • Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models
    • Danielsson, J. (1998). Multivariate stochastic volatility models: estimation and a comparison with VGARCH models. J. Empirical Finance 5:155-173.
    • (1998) J. Empirical Finance , vol.5 , pp. 155-173
    • Danielsson, J.1
  • 7
    • 20444434024 scopus 로고    scopus 로고
    • Estimation for state-space models: An approximate likelihood approach
    • Davis, R. A., Rodriguez-Yam, G. (2005). Estimation for state-space models: an approximate likelihood approach. Statistica Sinica 15:381-406.
    • (2005) Statistica Sinica , vol.15 , pp. 381-406
    • Davis, R.A.1    Rodriguez-Yam, G.2
  • 8
    • 0001325243 scopus 로고
    • The simulation smoother for time series models
    • de Jong, P., Shephard, N. (1995). The simulation smoother for time series models. Biometrika 82:339-350.
    • (1995) Biometrika , vol.82 , pp. 339-350
    • De Jong, P.1    Shephard, N.2
  • 10
    • 0000094018 scopus 로고    scopus 로고
    • Monte Carlo maximum likelihood estimation of non-Gaussian state space model
    • Durbin, J., Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation of non-Gaussian state space model. Biometrika 84:669-684.
    • (1997) Biometrika , vol.84 , pp. 669-684
    • Durbin, J.1    Koopman, S.J.2
  • 12
    • 3142711588 scopus 로고    scopus 로고
    • A simple and efficient simulation smoother for state space time series analysis
    • Durbin, J., Koopman, S. J. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika 89:603-616.
    • (2002) Biometrika , vol.89 , pp. 603-616
    • Durbin, J.1    Koopman, S.J.2
  • 13
    • 0036339461 scopus 로고    scopus 로고
    • Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes
    • Durham, A. G., Gallant, A. R. (2001). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes (with discussion). J. Business and Economic Statist. 20:297-316.
    • (2001) J. Business and Economic Statist. , vol.20 , pp. 297-316
    • Durham, A.G.1    Gallant, A.R.2
  • 14
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation
    • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica 50:987-1007.
    • (1982) Econometrica , vol.50 , pp. 987-1007
    • Engle, R.F.1
  • 15
    • 0032347339 scopus 로고    scopus 로고
    • A maximum likelihood approach for non-gaussian stochastic volatility models
    • Fridman, M., Harris, L. (1998). A maximum likelihood approach for non-gaussian stochastic volatility models. J. Business and Economic Statistics 16:284-291.
    • (1998) J. Business and Economic Statistics , vol.16 , pp. 284-291
    • Fridman, M.1    Harris, L.2
  • 16
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57:1317-1339.
    • (1989) Econometrica , vol.57 , pp. 1317-1339
    • Geweke, J.1
  • 17
    • 19644379708 scopus 로고    scopus 로고
    • A forecast comparison of volatility models: Does anything beat a GARCH(1,1)?
    • forthcoming
    • Hansen, P., Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH(1,1)? J. Applied Econometrics, forthcoming.
    • (2005) J. Applied Econometrics
    • Hansen, P.1    Lunde, A.2
  • 20
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • Kim, S., Shephard, N., Chib, S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Rev. Economic Studies 65:361-393.
    • (1998) Rev. Economic Studies , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 21
    • 19644389883 scopus 로고    scopus 로고
    • Forecasting the daily variability of the S&P100 stock index using historical, realised and implied volatility measurements
    • Koopman, S. J., Jungbacker, B., Hol, E. (2005). Forecasting the daily variability of the S&P100 stock index using historical, realised and implied volatility measurements. J. Empirical Finance 12:445-475.
    • (2005) J. Empirical Finance , vol.12 , pp. 445-475
    • Koopman, S.J.1    Jungbacker, B.2    Hol, E.3
  • 22
    • 3142690660 scopus 로고    scopus 로고
    • State space models with a common stochastic variance
    • Koopman, S. J., Bos, C. S. (2004). State space models with a common stochastic variance. J. Business and Economic Statist. 22:346-357.
    • (2004) J. Business and Economic Statist. , vol.22 , pp. 346-357
    • Koopman, S.J.1    Bos, C.S.2
  • 23
    • 0142023212 scopus 로고    scopus 로고
    • The stochastic volatility in mean model: Empirical evidence from international stock markets
    • Koopman, S. J., Hol-Uspensky, E. (2002). The stochastic volatility in mean model: empirical evidence from international stock markets. J. Applied Econometrics 17:667-689.
    • (2002) J. Applied Econometrics , vol.17 , pp. 667-689
    • Koopman, S.J.1    Hol-Uspensky, E.2
  • 25
    • 0001729490 scopus 로고    scopus 로고
    • Statistical algorithms for models in state space form using SsfPack 2.2
    • Koopman, S. J., Shephard, N., Doornik, J. A. (1999). Statistical algorithms for models in state space form using SsfPack 2.2. Econometrics Journal 2:113-166. http://www.ssfpack.com/.
    • (1999) Econometrics Journal , vol.2 , pp. 113-166
    • Koopman, S.J.1    Shephard, N.2    Doornik, J.A.3
  • 26
    • 14844367078 scopus 로고    scopus 로고
    • Estimating stochastic volatility models: A comparison of two importance samplers
    • Art 5
    • Lee, K. M., Koopman, S. J. (2004). Estimating stochastic volatility models: a comparison of two importance samplers. Studies in Nonlinear Dynamics and Econometrics 8:Art 5.
    • (2004) Studies in Nonlinear Dynamics and Econometrics , vol.8
    • Lee, K.M.1    Koopman, S.J.2
  • 27
    • 0034396460 scopus 로고    scopus 로고
    • Stochastic volatility models: Conditional normality versus heavy-tailed distributions
    • Liesenfeld, R., Jung, R. (2000). Stochastic volatility models: conditional normality versus heavy-tailed distributions. J. Applied Econometrics 15:137-160.
    • (2000) J. Applied Econometrics , vol.15 , pp. 137-160
    • Liesenfeld, R.1    Jung, R.2
  • 28
    • 33747748502 scopus 로고
    • Testing the behaviour of importance sampling weights. Computer Science and Statistics
    • Monahan, J. F. (1993). Testing the behaviour of importance sampling weights. Computer Science and Statistics. In: Proceedings of the 25th Annual Symposium on the Interface, pp. 112-117.
    • (1993) Proceedings of the 25th Annual Symposium on the Interface , pp. 112-117
    • Monahan, J.F.1
  • 29
    • 0001981538 scopus 로고    scopus 로고
    • Time varying covariances: A factor stochastic volatility approach
    • Bernardo, J. M., Berger, J. O., Dawid, A. P., Smith, A. F. M., eds. Oxford: Oxford University Press
    • Pitt, M. K., Shephard, N. (1999). Time varying covariances: a factor stochastic volatility approach (with discussion). In: Bernardo, J. M., Berger, J. O., Dawid, A. P., Smith, A. F. M., eds., Bayesian Statistics. Oxford: Oxford University Press, pp. 547-570.
    • (1999) Bayesian Statistics , pp. 547-570
    • Pitt, M.K.1    Shephard, N.2
  • 30
    • 0012119552 scopus 로고
    • An analysis of international exchange rates using multivariate DLM's
    • Quintana, J. M., West, M. (1987). An analysis of international exchange rates using multivariate DLM's. The Statistican 36:275-281.
    • (1987) The Statistican , vol.36 , pp. 275-281
    • Quintana, J.M.1    West, M.2
  • 31
    • 0000254890 scopus 로고    scopus 로고
    • Estimation of stochastic volatility models via Monte Carlo maximum likelihood
    • Sandmann, G., Koopman, S. J. (1998). Estimation of stochastic volatility models via Monte Carlo maximum likelihood. J. Econometrics 87:271-301.
    • (1998) J. Econometrics , vol.87 , pp. 271-301
    • Sandmann, G.1    Koopman, S.J.2
  • 32
    • 38149144735 scopus 로고
    • Local scale model: State space alternative to integrated GARCH processes
    • Shephard, N. (1994). Local scale model: state space alternative to integrated GARCH processes. J. Econometrics 60:181-202.
    • (1994) J. Econometrics , vol.60 , pp. 181-202
    • Shephard, N.1
  • 33
    • 0001790102 scopus 로고    scopus 로고
    • Statistical aspects of ARCH and stochastic volatility
    • Cox, D. R., Hinkley, D. V., Barndorff-Nielson, O. E., eds. London: Chapman & Hall
    • Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In: Cox, D. R., Hinkley, D. V., Barndorff-Nielson, O. E., eds., Time Series Models in Econometrics, Finance and Other Fields. London: Chapman & Hall, pp. 1-67.
    • (1996) Time Series Models in Econometrics, Finance and Other Fields , pp. 1-67
    • Shephard, N.1
  • 35
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • Shephard, N., Pitt, M. K. (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika 84:653-667.
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 37
    • 19744365632 scopus 로고    scopus 로고
    • On leverage in a stochastic volatility model
    • forthcoming
    • Yu, J. (2005). On leverage in a stochastic volatility model. J. Econometrics 44, forthcoming.
    • (2005) J. Econometrics , vol.44
    • Yu, J.1
  • 38
    • 33747763372 scopus 로고    scopus 로고
    • Multivariate stochastic volatility models: Bayesian estimation and model comparison
    • Yu, J., Meyer, R. (2006). Multivariate stochastic volatility models: Bayesian estimation and model comparison. Econometric Reviews 25(2-3):361-384.
    • (2006) Econometric Reviews , vol.25 , Issue.2-3 , pp. 361-384
    • Yu, J.1    Meyer, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.