메뉴 건너뛰기




Volumn 20, Issue 3, 2006, Pages 145-157

Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase

Author keywords

Artificial neural network modeling; DFT; Enzyme activity; Ethylbenzene dehydrogenase; Multiple linear regression; QSAR

Indexed keywords

COMPUTATIONAL CHEMISTRY; DENSITY FUNCTIONAL THEORY; ENZYME ACTIVITY; ETHYLBENZENE; FORECASTING; NEURAL NETWORKS; QUANTUM CHEMISTRY; REACTION RATES;

EID: 33747688457     PISSN: 0920654X     EISSN: 15734951     Source Type: Journal    
DOI: 10.1007/s10822-006-9042-6     Document Type: Article
Times cited : (43)

References (28)
  • 20
    • 85135598363 scopus 로고    scopus 로고
    • 2 modeling environment, release 4.8. Accelrys Software Inc., San Diego
    • 2 modeling environment, release 4.8. Accelrys Software Inc., San Diego
    • (2005)
  • 27
    • 26444534452 scopus 로고    scopus 로고
    • In: Mira J, Alvarez JT (eds) Lecture Notes in Computer Science Springer-Verlag, Berlin Heidelberg New York
    • Horzyk A, Tadeusiewicz R (2005) In: Mira J, Alvarez JT (eds) Mechanism, symbols, and models underlying cognition. Lecture Notes in Computer Science, vol 3561, Part I. Springer-Verlag, Berlin Heidelberg New York, pp 156-165
    • (2005) Mechanism, Symbols, and Models Underlying Cognition , vol.3561 , Issue.PART I , pp. 156-165
    • Horzyk, A.1    Tadeusiewicz, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.