-
1
-
-
0035132274
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.86.757
-
M. Harada and K. Yamawaki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.757 86, 757 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 757
-
-
Harada, M.1
Yamawaki, K.2
-
2
-
-
0037780975
-
-
PRPLCM 0370-1573 10.1016/S0370-1573(03)00139-X
-
M. Harada and K. Yamawaki, Phys. Rep. PRPLCM 0370-1573 10.1016/S0370-1573(03)00139-X 381, 1 (2003).
-
(2003)
Phys. Rep.
, vol.381
, pp. 1
-
-
Harada, M.1
Yamawaki, K.2
-
3
-
-
33244494017
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.73.036001
-
M. Harada and C. Sasaki, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.73.036001 73, 036001 (2006).
-
(2006)
Phys. Rev. D
, vol.73
, pp. 036001
-
-
Harada, M.1
Sasaki, C.2
-
4
-
-
33344470257
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.73.036004
-
Y. Hidaka, O. Morimatsu, and M. Ohtani, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.73.036004 73, 036004 (2006).
-
(2006)
Phys. Rev. D
, vol.73
, pp. 036004
-
-
Hidaka, Y.1
Morimatsu, O.2
Ohtani, M.3
-
5
-
-
33645512843
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.132301
-
G. E. Brown, B. A. Gelman, M. Rho, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.132301 96, 132301 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 132301
-
-
Brown, G.E.1
Gelman, B.A.2
Rho, M.3
-
6
-
-
33144471970
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.062303
-
G. E. Brown, C.-H. Lee, H. J. Park, and M. Rho, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.062303 96, 062303 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 062303
-
-
Brown, G.E.1
Lee, C.-H.2
Park, H.J.3
Rho, M.4
-
7
-
-
84884347678
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.092301
-
J. Adams (STAR Collaboration), Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.092301 92, 092301 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 092301
-
-
Adams, J.1
-
8
-
-
85026372130
-
-
R. Rapp (private communication).
-
-
-
Rapp, R.1
-
9
-
-
2942555911
-
-
edited by R. C. Hwa and X.-N. Wang (World Scientific, Singapore
-
P. Braun-Munzinger, K. Redlich, and J. Stachel, in Quark Gluon Plasma 3, edited by, R. C. Hwa, and, X.-N. Wang, (World Scientific, Singapore, 2004).
-
(2004)
Quark Gluon Plasma 3
-
-
Braun-Munzinger, P.1
Redlich, K.2
Stachel, J.3
-
10
-
-
0008953458
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.66.2720
-
G. E. Brown and M. Rho, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.66.2720 66, 2720 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.66
, pp. 2720
-
-
Brown, G.E.1
Rho, M.2
-
12
-
-
2342440134
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.69.065020
-
D. T. Son and M. A. Stephanov, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.69.065020 69, 065020 (2004).
-
(2004)
Phys. Rev. D
, vol.69
, pp. 065020
-
-
Son, D.T.1
Stephanov, M.A.2
-
13
-
-
22144432992
-
-
PTPKAV 0033-068X 10.1143/PTP.113.843
-
T. Sakai and S. Sugimoto, Prog. Theor. Phys. PTPKAV 0033-068X 10.1143/PTP.113.843 113, 843 (2005);
-
(2005)
Prog. Theor. Phys.
, vol.113
, pp. 843
-
-
Sakai, T.1
Sugimoto, S.2
-
14
-
-
32044442269
-
-
PTPKAV 0033-068X 10.1143/PTP.114.1083
-
T. Sakai and S. Sugimoto, Prog. Theor. Phys. PTPKAV 0033-068X 10.1143/PTP.114.1083 114, 1083 (2005).
-
(2005)
Prog. Theor. Phys.
, vol.114
, pp. 1083
-
-
Sakai, T.1
Sugimoto, S.2
-
16
-
-
0037142103
-
-
PYLBAJ 0370-2693 10.1016/S0370-2693(02)01940-8
-
M. Harada and C. Sasaki, Phys. Lett. PYLBAJ 0370-2693 10.1016/S0370-2693(02)01940-8 B537, 280 (2002).
-
(2002)
Phys. Lett.
, vol.537
, pp. 280
-
-
Harada, M.1
Sasaki, C.2
-
17
-
-
0036630401
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.66.016003
-
M. Harada, Y. Kim, and M. Rho, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.66.016003 66, 016003 (2002).
-
(2002)
Phys. Rev. D
, vol.66
, pp. 016003
-
-
Harada, M.1
Kim, Y.2
Rho, M.3
-
18
-
-
0001687492
-
-
One might worry that higher-loop graphs destroy or significantly modify the VM fixed structure that plays a crucial role in our theory. At the moment, no higher-loop calculations are available: there are simply too many graphs to calculate and too many undetermined parameters to handle at already two-loop order. However, it is not difficult to convince oneself that our conclusion will not be affected by higher-order graphs. There are several ways to see this. The simplest is the following. Although higher-loop calculations are not available, it has been proven by PRLTAO 0031-9007 10.1103/PhysRevLett.71.1299
-
One might worry that higher-loop graphs destroy or significantly modify the VM fixed structure that plays a crucial role in our theory. At the moment, no higher-loop calculations are available: there are simply too many graphs to calculate and too many undetermined parameters to handle at already two-loop order. However, it is not difficult to convince oneself that our conclusion will not be affected by higher-order graphs. There are several ways to see this. The simplest is the following. Although higher-loop calculations are not available, it has been proven by M. Harada, T. Kugo, and K. Yamawaki in Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.71.1299 71, 1299 (1993) that the tree-order low-energy theorems remain rigorously valid to all orders. In particular, the dimension-2 operators in the effective action remain the same to all orders. This means that the crucial relation in HLS, i.e., mρ2=afπ2g2, holds to all orders. The mass, therefore, goes to zero as g goes to zero. Now, the matching condition at the matching scale Λ says that g=0 when q̄q =0, and since g=0 is a fixed point of the RGE for g at any order (higher loops bring in higher powers in g in the β function), it will flow to zero at the point where the condensate vanishes. One can also see that a=1+O(g2n) near q̄q =0, where n is the number of loops; so near Tc, the correction to 1 is small, and at Tc,a=1. Therefore, we have the VM fixed point intact. We acknowledge helpful comments on this matter from M. Harada, C. Sasaki, and K. Yamawaki.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1299
-
-
Harada, M.1
Kugo, T.2
Yamawaki, K.3
-
19
-
-
85026381298
-
-
The term "asymptotic freedom" as used here could be a misnomer in that the theory we are using is an effective theory defined up to the cutoff at the matching scale, whereas QCD which is asymptotically free is a renormalizable theory in which the cutoff can be sent off to infinity. This means that within the scale applicable to the effective theory, an ultraviolet fixed point exists at which the coupling constant goes to zero.
-
The term "asymptotic freedom" as used here could be a misnomer in that the theory we are using is an effective theory defined up to the cutoff at the matching scale, whereas QCD which is asymptotically free is a renormalizable theory in which the cutoff can be sent off to infinity. This means that within the scale applicable to the effective theory, an ultraviolet fixed point exists at which the coupling constant goes to zero.
-
-
-
-
21
-
-
0000239097
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.65.1177
-
S. Weinberg, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.65. 1177 65, 1177 (1990);
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 1177
-
-
Weinberg, S.1
-
22
-
-
85026406891
-
-
In 1993 Trieste Proceedings, Salamfestschrift
-
In 1993 Trieste Proceedings, Salamfestschrift, 1995 (unpublished).
-
(1995)
-
-
-
23
-
-
0036236956
-
-
PRPLCM 0370-1573 10.1016/S0370-1573(01)00084-9
-
G. E. Brown and M. Rho, Phys. Rep. PRPLCM 0370-1573 10.1016/S0370- 1573(01)00084-9 363, 85 (2002).
-
(2002)
Phys. Rep.
, vol.363
, pp. 85
-
-
Brown, G.E.1
Rho, M.2
-
24
-
-
84927709075
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.70.074002
-
M. Harada, M. Rho, and C. Sasaki, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.70.074002 70, 074002 (2004).
-
(2004)
Phys. Rev. D
, vol.70
, pp. 074002
-
-
Harada, M.1
Rho, M.2
Sasaki, C.3
-
25
-
-
85026409966
-
-
hep-ph/0502049.
-
M. Rho, hep-ph/0502049.
-
-
-
Rho, M.1
-
26
-
-
27144445013
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.192303
-
D. Trnka, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.192303 94, 192303 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 192303
-
-
Trnka, D.1
-
27
-
-
11344281901
-
-
NUPABL 0375-9474 10.1016/j.nuclphysa.2004.09.108
-
G. E. Brown, C.-H. Lee, and M. Rho, Nucl. Phys. NUPABL 0375-9474 10.1016/j.nuclphysa.2004.09.108 A747, 530 (2005).
-
(2005)
Nucl. Phys.
, vol.747
, pp. 530
-
-
Brown, G.E.1
Lee, C.-H.2
Rho, M.3
-
28
-
-
0037460075
-
-
NUPABL 0375-9474 10.1016/S0375-9474(03)00672-9
-
E. V. Shuryak and G. E. Brown, Nucl. Phys. NUPABL 0375-9474 10.1016/S0375-9474(03)00672-9 A717, 322 (2003).
-
(2003)
Nucl. Phys.
, vol.717
, pp. 322
-
-
Shuryak, E.V.1
Brown, G.E.2
-
29
-
-
85026380984
-
-
Empirically the total width of the ρ measured turned out to be ∼150 MeV, not 100 MeV, because of the collisional broadening of ∼50 MeV.
-
Empirically the total width of the ρ measured turned out to be ∼150 MeV, not 100 MeV, because of the collisional broadening of ∼50 MeV.
-
-
-
-
30
-
-
85026362451
-
-
hep-ph/0008031, Phys. Rep. (to be published).
-
D. E. Miller, hep-ph/0008031, Phys. Rep. (to be published).
-
-
-
Miller, D.E.1
-
32
-
-
1642284594
-
-
NUPABL 0375-9474 10.1016/S0375-9474(02)01526-9
-
M. Asakawa, T. Hatsuda, and Y. Nakahara, Nucl. Phys. NUPABL 0375-9474 10.1016/S0375-9474(02)01526-9 A715, 863 (2003).
-
(2003)
Nucl. Phys.
, vol.715
, pp. 863
-
-
Asakawa, M.1
Hatsuda, T.2
Nakahara, Y.3
-
33
-
-
3242813070
-
-
NUPABL 0375-9474 10.1016/j.nuclphysa.2004.04.116
-
G. E. Brown, C.-H. Lee, M. Rho, and E. Shuryak, Nucl. Phys. NUPABL 0375-9474 10.1016/j.nuclphysa.2004.04.116 A740, 171 (2004).
-
(2004)
Nucl. Phys.
, vol.740
, pp. 171
-
-
Brown, G.E.1
Lee, C.-H.2
Rho, M.3
Shuryak, E.4
-
34
-
-
4444369329
-
-
PRPLCM 0370-1573 10.1016/j.physrep.2004.05.006
-
G. E. Brown and M. Rho, Phys. Rep. PRPLCM 0370-1573 10.1016/j.physrep. 2004.05.006 398, 301 (2004).
-
(2004)
Phys. Rep.
, vol.398
, pp. 301
-
-
Brown, G.E.1
Rho, M.2
|