메뉴 건너뛰기




Volumn , Issue , 1993, Pages 220-227

Learning DNF Via Probabilistic Evidence Combination

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION);

EID: 33747398544     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (20)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • [Angluin and Laird, 1988]
    • [Angluin and Laird, 1988] D. Angluin and P. Laird. Learning from noisy examples. Machine Leaming, 2(4):343-370, 1988.
    • (1988) Machine Leaming , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 3
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • [Clark and Niblett, 1989]
    • [Clark and Niblett, 1989] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261-284, 1989.
    • (1989) Machine Learning , vol.3 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 5
    • 0006842954 scopus 로고
    • Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension
    • [Haussler et al,, 1991] Morgan Kaufmann
    • [Haussler et al,, 1991] D. Haussler, Kearns, and R. Schapire. Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension. In Comyutational Learning Theory: Proceedings of the Fourth Annual Workshop, Morgan Kaufmann, 1991.
    • (1991) Comyutational Learning Theory: Proceedings of the Fourth Annual Workshop
    • Haussler, D.1    Kearns2    Schapire, R.3
  • 6
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • [Haussler, 1988]
    • [Haussler, 1988] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intelligence, 36(2): 177-222, 1988.
    • (1988) Artificial Intelligence , vol.36 , Issue.2 , pp. 177-222
    • Haussler, D.1
  • 10
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • [Mangasarian and Wolberg, 1990]
    • [Mangasarian and Wolberg, 1990] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming. SIAM News, 23(5):1-18, 1990.
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O. L.1    Wolberg, W. H.2
  • 12
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its application to three medical domains
    • 1. and, [Michalski et al, 1986] pages Philadelphia, PA, August
    • [Michalski et al, 1986] R. S. Michalski, 1. Mozetic, J. Hong, and N. Lavrac. The multi-purpose incremental learning system AQ15 and its application to three medical domains. In Proceedings of the National Conference on Artificial Intelligence, pages 1041-1045, Philadelphia, PA, August 1986.
    • (1986) Proceedings of the National Conference on Artificial Intelligence , pp. 1041-1045
    • Michalski, R. S.1    Mozetic2    Hong, J.3    Lavrac, N.4
  • 13
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • [Michalski, 1983] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, pages Morgan Kaufmann Publishers, Los Altos, CA
    • [Michalski, 1983] R. S. Michalski. A theory and methodology of inductive learning. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Leaming: An Artificial Intelligence Approach, pages 83-134. Morgan Kaufmann Publishers, Los Altos, CA, 1983.
    • (1983) Machine Leaming: An Artificial Intelligence Approach , pp. 83-134
    • Michalski, R. S.1
  • 14
    • 0000531852 scopus 로고
    • Generalization as search
    • [Mitchell, 1982]
    • [Mitchell, 1982] T. M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203-226, 1982.
    • (1982) Artificial Intelligence , vol.18 , Issue.2 , pp. 203-226
    • Mitchell, T. M.1
  • 15
    • 0026980836 scopus 로고
    • Classifier learning from noisy data as probabilistic evidence combination
    • [Norton and Hirsh, 1992] pages AAAI Press MIT Press
    • [Norton and Hirsh, 1992] S. W . Norton and H. Hirsh. Classifier learning from noisy data as probabilistic evidence combination. In AAAI92: Proceedings of the Tenth National Conference on Artificial Intelligence, pages 141-146. AAAI Press / MIT Press, 1992.
    • (1992) AAAI92: Proceedings of the Tenth National Conference on Artificial Intelligence , pp. 141-146
    • Norton, S. W .1    Hirsh, H.2
  • 16
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • [Pagallo and Haussler, 1990] (l)
    • [Pagallo and Haussler, 1990] G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine Leaming, 5(l):71-99, 1990.
    • (1990) Machine Leaming , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 17
    • 0344751347 scopus 로고
    • Inductive knowledge acquisition: A case study
    • [Quinlan, 1987] J. R. Quinlan, editor. pages Turing Institute Press
    • [Quinlan, 1987] J. R. Quinlan. Inductive knowledge acquisition: A case study. In J. R. Quinlan, editor. Application of Expert Systems, pages 157-173. Turing Institute Press, 1987.
    • (1987) Application of Expert Systems , pp. 157-173
    • Quinlan, J. R.1
  • 18
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • [Quinlan, 1990]
    • [Quinlan, 1990] J. R. Quinlan. Learning logical definitions from relations. Machine Leaming, 5(3):239- 266, 1990.
    • (1990) Machine Leaming , vol.5 , Issue.3 , pp. 239-266
    • Quinlan, J. R.1
  • 19
    • 1442267080 scopus 로고
    • Learning decision lists
    • [Rivest, 1987]
    • [Rivest, 1987] R. L. Rivest. Learning decision lists. Machine Learning, 2:229-246, 1987.
    • (1987) Machine Learning , vol.2 , pp. 229-246
    • Rivest, R. L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.