-
5
-
-
0006845861
-
Sahlqvist formulae are not so elementary
-
Csirmaz L., Gabbay D., and de Rijke M. (Eds), CSLI Publications, Stanford
-
Chagrov A., and Zakharyaschev M. Sahlqvist formulae are not so elementary. In: Csirmaz L., Gabbay D., and de Rijke M. (Eds). Logic Colloquium'92 (1995), CSLI Publications, Stanford 61-73
-
(1995)
Logic Colloquium'92
, pp. 61-73
-
-
Chagrov, A.1
Zakharyaschev, M.2
-
6
-
-
33747351630
-
-
Schmidt R., et al. (Ed), Kings College, London
-
Conradie W., Goranko V., and Vakarelov D. Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model-Theoretic Aspects. In: Schmidt R., et al. (Ed). Advances in Modal Logic vol. 5 (2005), Kings College, London 17-51
-
(2005)
Advances in Modal Logic
, vol.5
, pp. 17-51
-
-
Conradie, W.1
Goranko, V.2
Vakarelov, D.3
-
7
-
-
33747360754
-
-
W. Conradie, V. Goranko, D. Vakarelov, Algorithmic correspondence and completeness in modal logic. I. The Algorithm SQEMA, 2005 (submitted for publication)
-
-
-
-
8
-
-
33747356264
-
-
W. Conradie, V. Goranko, D. Vakarelov, Algorithmic correspondence and completeness in modal logic. II. Extensions of the Algorithm SQEMA, 2006 (in preparation)
-
-
-
-
9
-
-
33747366982
-
-
W. Conradie, V. Goranko, Algorithmic classes of elementary canonical formulae, 2006 (in preparation)
-
-
-
-
10
-
-
33747347322
-
-
W. Conradie, V. Goranko, Model-theoretic and algebraic perspectives on elementary canonical formulae, 2006 (in preparation)
-
-
-
-
11
-
-
33747333884
-
-
M. de Rijke, How not to generalize Sahlqvist's Theorem, Technical Note, ILLC, 1992
-
-
-
-
12
-
-
33747331406
-
-
M. de Rijke, Extending Modal Logic, Ph.D. Thesis, ILLC, University of Amsterdam, ILLC Dissertation Series 1993-4, 1993
-
-
-
-
13
-
-
0002797579
-
Sahlqvist's theorem for Boolean algebras with operators with an application to cylindric algebras
-
de Rijke M., and Venema Y. Sahlqvist's theorem for Boolean algebras with operators with an application to cylindric algebras. Studia Logica 54 (1995) 61-78
-
(1995)
Studia Logica
, vol.54
, pp. 61-78
-
-
de Rijke, M.1
Venema, Y.2
-
17
-
-
0009743963
-
Quantifier elimination in second-order predicate logic
-
Gabbay D., and Ohlbach H.-J. Quantifier elimination in second-order predicate logic. South African Computer Journal 7 (1992) 35-43
-
(1992)
South African Computer Journal
, vol.7
, pp. 35-43
-
-
Gabbay, D.1
Ohlbach, H.-J.2
-
19
-
-
0007129043
-
Bounded distributive lattices with operators
-
Gehrke M., and Jónsson B. Bounded distributive lattices with operators. Mathematica Japonica 40 (1994) 207-215
-
(1994)
Mathematica Japonica
, vol.40
, pp. 207-215
-
-
Gehrke, M.1
Jónsson, B.2
-
20
-
-
1942539778
-
Bounded distributive lattice extensions
-
Gehrke M., and Jónsson B. Bounded distributive lattice extensions. Mathematica Scandinavica 94 2 (2004) 13-45
-
(2004)
Mathematica Scandinavica
, vol.94
, Issue.2
, pp. 13-45
-
-
Gehrke, M.1
Jónsson, B.2
-
23
-
-
33645270640
-
First-order definability in modal logic
-
Goldblatt R. First-order definability in modal logic. Journal of Symbolic Logic 40 (1975) 35-40
-
(1975)
Journal of Symbolic Logic
, vol.40
, pp. 35-40
-
-
Goldblatt, R.1
-
25
-
-
0038631743
-
Persistence and atomicity for varieties of Boolean algebras with operators
-
Goldblatt R. Persistence and atomicity for varieties of Boolean algebras with operators. Studia Logica (2001) 155-171
-
(2001)
Studia Logica
, pp. 155-171
-
-
Goldblatt, R.1
-
27
-
-
0035484686
-
Sahlqvist formulae in Hybrid Polyadic Modal Languages
-
Goranko V., and Vakarelov D. Sahlqvist formulae in Hybrid Polyadic Modal Languages. Journal of Logic and Computation 11 5 (2001) 737-754
-
(2001)
Journal of Logic and Computation
, vol.11
, Issue.5
, pp. 737-754
-
-
Goranko, V.1
Vakarelov, D.2
-
28
-
-
33747342681
-
Sahlqvist Formulae Unleashed in Polyadic Modal Languages
-
World Scientific, Singapore
-
Goranko V., and Vakarelov D. Sahlqvist Formulae Unleashed in Polyadic Modal Languages. Advances in Modal Logic vol. 3 (2002), World Scientific, Singapore 221-240
-
(2002)
Advances in Modal Logic
, vol.3
, pp. 221-240
-
-
Goranko, V.1
Vakarelov, D.2
-
29
-
-
33747340784
-
SCAN is complete for all Sahlqvist formulae
-
Relational and Kleene-Algebraic Methods in Computer Science (Proc. of RelMiCS 7), Springer
-
Goranko V., Hustadt U., Schmidt R., and Vakarelov D. SCAN is complete for all Sahlqvist formulae. Relational and Kleene-Algebraic Methods in Computer Science (Proc. of RelMiCS 7). LNCS vol. 3051 (2004), Springer 149-162
-
(2004)
LNCS
, vol.3051
, pp. 149-162
-
-
Goranko, V.1
Hustadt, U.2
Schmidt, R.3
Vakarelov, D.4
-
30
-
-
0001169610
-
On the canonicity of Sahlqvist identities
-
Jónsson B. On the canonicity of Sahlqvist identities. Studia Logica 53 (1995) 473-491
-
(1995)
Studia Logica
, vol.53
, pp. 473-491
-
-
Jónsson, B.1
-
32
-
-
0006802806
-
How completeness and correspondence theory got married
-
de Rijke M. (Ed), Kluwer, Synthese Library
-
Kracht M. How completeness and correspondence theory got married. In: de Rijke M. (Ed). Diamonds and Defaults (1993), Kluwer, Synthese Library 175-214
-
(1993)
Diamonds and Defaults
, pp. 175-214
-
-
Kracht, M.1
-
34
-
-
0008635333
-
Simulation and transfer results in modal logic - A survey
-
Kracht M., and Wolter F. Simulation and transfer results in modal logic - A survey. Studia Logica 59 (1997) 149-177
-
(1997)
Studia Logica
, vol.59
, pp. 149-177
-
-
Kracht, M.1
Wolter, F.2
-
35
-
-
0040880586
-
A fixpoint approach to second-order quantifier elimination with applications to correspondence theory
-
Orlowska E. (Ed), Springer Physica-Verlag
-
Nonnengart A., and Szalas A. A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In: Orlowska E. (Ed). Logic at Work, Essays Dedicated to the Memory of Helena Rasiowa (1998), Springer Physica-Verlag 89-108
-
(1998)
Logic at Work, Essays Dedicated to the Memory of Helena Rasiowa
, pp. 89-108
-
-
Nonnengart, A.1
Szalas, A.2
-
36
-
-
9444277831
-
Quantifier elimination for second-order predicate logic
-
Ohlbach H.J., and Reyle U. (Eds), Kluwer
-
Nonnengart A., Ohlbach H.J., and Szalas A. Quantifier elimination for second-order predicate logic. In: Ohlbach H.J., and Reyle U. (Eds). Logic, Language and Reasoning: Essays in Honour of Dov Gabbay, Part I (1997), Kluwer
-
(1997)
Logic, Language and Reasoning: Essays in Honour of Dov Gabbay, Part I
-
-
Nonnengart, A.1
Ohlbach, H.J.2
Szalas, A.3
-
37
-
-
77956968248
-
Correspondence and completeness in the first and second-order semantics for modal logic
-
Kanger S. (Ed). Uppsala 1973, North-Holland, Amsterdam
-
Sahlqvist H. Correspondence and completeness in the first and second-order semantics for modal logic. In: Kanger S. (Ed). Proc. of the 3rd Scandinavial Logic Symposium. Uppsala 1973 (1975), North-Holland, Amsterdam 110-143
-
(1975)
Proc. of the 3rd Scandinavial Logic Symposium
, pp. 110-143
-
-
Sahlqvist, H.1
-
39
-
-
0010894991
-
A new proof of Sahlqvist's theorem on modal definability and completeness
-
Sambin G., and Vaccaro V. A new proof of Sahlqvist's theorem on modal definability and completeness. Journal of Symbolic Logic 54 (1989) 992-999
-
(1989)
Journal of Symbolic Logic
, vol.54
, pp. 992-999
-
-
Sambin, G.1
Vaccaro, V.2
-
40
-
-
77952027460
-
Second-order quantifier elimination in modal contexts
-
JELIA'02. Flesca S., and Ianni G. (Eds), Springer-Verlag
-
Szalas A. Second-order quantifier elimination in modal contexts. In: Flesca S., and Ianni G. (Eds). JELIA'02. LNAI vol. 2424 (2002), Springer-Verlag 223-232
-
(2002)
LNAI
, vol.2424
, pp. 223-232
-
-
Szalas, A.1
-
42
-
-
33750727114
-
-
Balbiani Ph., et al. (Ed), Kings Colledge Publications
-
Vakarelov D. In: Balbiani Ph., et al. (Ed). Modal Definability in Languages with a Finite Number of Propositional Variables and a New extension of the Sahlqvist's Class. Advances in Modal logic vol. 4 (2003), Kings Colledge Publications 499-518
-
(2003)
Advances in Modal logic
, vol.4
, pp. 499-518
-
-
Vakarelov, D.1
-
43
-
-
33747359146
-
Modal definability, solving equations in modal algebras and generalizations of the Ackermann lemma
-
Dimtracopoulos C. (Ed). July 25-28, University of Athens, Athens, Greece
-
Vakarelov D. Modal definability, solving equations in modal algebras and generalizations of the Ackermann lemma. In: Dimtracopoulos C. (Ed). Proceedings of the 5th Panhellenic Logic Symposium. July 25-28 (2005), University of Athens, Athens, Greece 182-189
-
(2005)
Proceedings of the 5th Panhellenic Logic Symposium
, pp. 182-189
-
-
Vakarelov, D.1
-
44
-
-
33747350289
-
On a generalizations of the Ackermann lemma for computing first-order equivalents of modal formulas
-
July 28-August 3, Athens, Greece, Abstracts, Department of Mathematics, University of Athens, Athens, Greece URL:
-
Vakarelov D. On a generalizations of the Ackermann lemma for computing first-order equivalents of modal formulas. Logic Colloquium 2005, ASL European Summer Meeting. July 28-August 3, Athens, Greece, Abstracts (2005), Department of Mathematics, University of Athens, Athens, Greece 123. http://www.math.uoa.gr/lc2005 URL:
-
(2005)
Logic Colloquium 2005, ASL European Summer Meeting
, pp. 123
-
-
Vakarelov, D.1
-
45
-
-
33747337520
-
-
J.F.A.K. van Benthem, Modal Correspondence Theory, Ph. D. Dissertation, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976
-
-
-
-
47
-
-
0000397736
-
Derivation rules as anti-axioms in modal logic
-
Venema Y. Derivation rules as anti-axioms in modal logic. Journal of Symbolic Logic 58 (1993) 1003-1034
-
(1993)
Journal of Symbolic Logic
, vol.58
, pp. 1003-1034
-
-
Venema, Y.1
-
48
-
-
0000890459
-
Atom structures and Sahlqvist equations
-
Venema Y. Atom structures and Sahlqvist equations. Algebra Universalis 38 (1997) 185-199
-
(1997)
Algebra Universalis
, vol.38
, pp. 185-199
-
-
Venema, Y.1
-
49
-
-
0039850121
-
-
Kracht M., de Rijke M., Wansing H., and Zakharyaschev M. (Eds), CSLI Publications, Stanford
-
Venema Y. In: Kracht M., de Rijke M., Wansing H., and Zakharyaschev M. (Eds). Atom structures. Advances in Modal Logic vol. 1 (1998), CSLI Publications, Stanford 291-305
-
(1998)
Advances in Modal Logic
, vol.1
, pp. 291-305
-
-
Venema, Y.1
-
50
-
-
2942663636
-
Canonical pseudo-correspondence
-
Kracht M., de Rijke M., Wansing H., and Zakharyaschev M. (Eds), CSLI Publications, Stanford also available as an ILLC preprint ML-1998-13 of the University of Amsterdam
-
Venema Y. Canonical pseudo-correspondence. In: Kracht M., de Rijke M., Wansing H., and Zakharyaschev M. (Eds). Advances in Modal Logic vol. 2 (2000), CSLI Publications, Stanford also available as an ILLC preprint ML-1998-13 of the University of Amsterdam
-
(2000)
Advances in Modal Logic
, vol.2
-
-
Venema, Y.1
|