-
1
-
-
1842424174
-
-
A. D. Boese, M. Oren, O. Atasolyu, J. M. L. Martin, M. Kállay, and J. Gauss, J. Chem. Phys. 120, 4129 (2004).
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 4129
-
-
Boese, A.D.1
Oren, M.2
Atasolyu, O.3
Martin, J.M.L.4
Kállay, M.5
Gauss, J.6
-
2
-
-
33747266300
-
-
private communication
-
J. M. L. Martin, (private communication).
-
-
-
Martin, J.M.L.1
-
5
-
-
0035934197
-
-
J. Chem. Phys. 115, 3484 (2001);
-
(2001)
J. Chem. Phys.
, vol.115
, pp. 3484
-
-
-
6
-
-
0037046746
-
-
D. A. Dixon, W. A. de Jong, K. A. Peterson, and J. S. Francisco, J. Phys. Chem. A 106, 4725 (2002);
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 4725
-
-
Dixon, D.A.1
De Jong, W.A.2
Peterson, K.A.3
Francisco, J.S.4
-
7
-
-
0037460552
-
-
D. Feller, K. A. Peterson, W. A. de Jong, and D. A. Dixon, J. Chem. Phys. 118, 3510 (2003).
-
(2003)
J. Chem. Phys.
, vol.118
, pp. 3510
-
-
Feller, D.1
Peterson, K.A.2
De Jong, W.A.3
Dixon, D.A.4
-
10
-
-
11044227833
-
-
A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 11599
-
-
Tajti, A.1
Szalay, P.G.2
Császár, A.G.3
Kállay, M.4
Gauss, J.5
Valeev, E.F.6
Flowers, B.A.7
Vázquez, J.8
Stanton, J.F.9
-
11
-
-
33747320369
-
-
note
-
As is well appreciated, "experimental" enthalpies of formation for most molecules do not come from a single experiment. Instead, the best values usually come from taking several experimental results into consideration in a critical data evaluation.
-
-
-
-
12
-
-
9144228826
-
-
edited by M. Parashar (Springer, Berlin)
-
G. von Laszewski, B. Ruscic, P. Wagstrom et al., in Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38;
-
(2002)
Lecture Notes in Computer Science
, vol.2536
, pp. 25-38
-
-
Von Laszewski, G.1
Ruscic, B.2
Wagstrom, P.3
-
13
-
-
9144239375
-
-
B. Ruscic, R. E. Pinzon, M. L. Moiton, G. von Laszevski, S. J. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, J. Phys. Chem. A 108, 9979 (2004).
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 9979
-
-
Ruscic, B.1
Pinzon, R.E.2
Moiton, M.L.3
Von Laszevski, G.4
Bittner, S.J.5
Nijsure, S.G.6
Amin, K.A.7
Minkoff, M.8
Wagner, A.F.9
-
14
-
-
33747222884
-
-
note
-
The term theoretical model chemistry was coined by People and is given to an approach in which all molecules are treated at a specifie and consistent level of theory.
-
-
-
-
15
-
-
0003552265
-
-
Hemisphere, New York
-
J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1989), see also http://www.codata.org/ codata/databases/keyl.html
-
CODATA Key Values for Thermodynamics
, vol.1989
-
-
Cox, J.D.1
Wagman, D.D.2
Medvedev, V.A.3
-
16
-
-
0003878179
-
-
Hemisphere, New York
-
L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties of Individual Substances, 4th ed. (Hemisphere, New York, 1989).
-
(1989)
Thermodynamic Properties of Individual Substances, 4th Ed.
-
-
Gurvich, L.V.1
Veyts, I.V.2
Alcock, C.B.3
-
17
-
-
33747313699
-
-
Well-known tabulations of molecular enthalpies of formation include M. W. Chase, Jr., J. Phys. Chem. Ref. Data 6, 27 (1998).
-
(1998)
J. Phys. Chem. Ref. Data
, vol.6
, pp. 27
-
-
Chase Jr., M.W.1
-
18
-
-
84858944576
-
-
B. Ruscic, M. Kállay, A. G. Császár, and J. F. Stanton (unpublished)
-
B. Ruscic, M. Kállay, A. G. Császár, and J. F. Stanton (unpublished)
-
-
-
-
19
-
-
84858944579
-
-
submitted
-
G. Tasi, R. Izsák, G. Matisz, A. G. Császár, M. Kállay, B. Ruscic, and J. F. Stanton, Angew. Chem., Int. Ed. Ed. (submitted).
-
Angew. Chem., Int. Ed. Ed.
-
-
Tasi, G.1
Izsák, R.2
Matisz, G.3
Császár, A.G.4
Kállay, M.5
Ruscic, B.6
Stanton, J.F.7
-
20
-
-
0003399528
-
-
Wiley, New York
-
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Molecular Orbital Theory (Wiley, New York, 1986), p. 298.
-
(1986)
Molecular Orbital Theory
, pp. 298
-
-
Hehre, W.J.1
Radom, L.2
Schleyer, P.V.R.3
Pople, J.A.4
-
23
-
-
0006244148
-
-
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
-
(1989)
Chem. Phys. Lett.
, vol.157
, pp. 479
-
-
Raghavachari, K.1
Trucks, G.W.2
Pople, J.A.3
Head-Gordon, M.4
-
24
-
-
0000724478
-
-
T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 9639
-
-
Helgaker, T.1
Klopper, W.2
Koch, H.3
Noga, J.4
-
29
-
-
0001676581
-
-
J. Chem. Phys. 97, 4282 (1992);
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 4282
-
-
-
38
-
-
0001136801
-
-
edited by K. N. Rao and C. W. Matthews (Academic, New York)
-
I. M. Mills, in Modern Spectroscopy: Modern Research, edited by K. N. Rao and C. W. Matthews (Academic, New York, 1972), pp. 115-140.
-
(1972)
Modern Spectroscopy: Modern Research
, pp. 115-140
-
-
Mills, I.M.1
-
39
-
-
33747252064
-
-
note
-
An error appears in note 62 of the original paper, in which it is stated that ROHF calculations were also used for the CN molecule. The numbers in the tables, however, are based on the ZPE calculated from UHF for CN. In this paper, the ROHF results are used.
-
-
-
-
40
-
-
8344254470
-
-
P. G. Szalay, J. Vázquez, C. Simmons, and J. F. Stanton, J. Chem. Phys. 121, 7624 (2004).
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 7624
-
-
Szalay, P.G.1
Vázquez, J.2
Simmons, C.3
Stanton, J.F.4
-
43
-
-
3142718359
-
-
M. S. Schuurman, S. R. Muir, W. D. Allen, and H. F. Schaefer, J. Chem. Phys. 120, 11586 (2004).
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 11586
-
-
Schuurman, M.S.1
Muir, S.R.2
Allen, W.D.3
Schaefer, H.F.4
-
45
-
-
33747301019
-
-
note
-
See Ref. 5 for a definition of the symbols in this equation. In Ref. 5, the fifth and sixth terms were in error. Furthermore, the kinetic energy elements in Ref. 28 were in error, which was addressed to some degree in Ref. 27.
-
-
-
-
46
-
-
33747225939
-
-
note
-
This is true, of course, for full configuration interaction wave functions and tends to be an excellent approximation for coupled-cluster methods of all types that include single excitations. Nevertheless, this assumption remains as an undesirable approximation of our original work and is rectified here.
-
-
-
-
48
-
-
84858946952
-
-
J. Vázquez, J. F. Stanton, and J. M. L. Martin (unpublished)
-
J. Vázquez, J. F. Stanton, and J. M. L. Martin (unpublished).
-
-
-
-
49
-
-
23944466425
-
-
Y. J. Bomble, J. F. Stanton, M. Kállay, and J. Gauss, J. Chem. Phys. 123, 054101 (2005).
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 054101
-
-
Bomble, Y.J.1
Stanton, J.F.2
Kállay, M.3
Gauss, J.4
-
51
-
-
33747326158
-
-
S. E. Wheeler, K. A. Robertson, W. D. Allen, H. F. Schaefer, Y. J. Bomble, and J. F. Stanton (unpublished)
-
S. E. Wheeler, K. A. Robertson, W. D. Allen, H. F. Schaefer, Y. J. Bomble, and J. F. Stanton (unpublished).
-
-
-
-
52
-
-
33747274154
-
-
note
-
0 contribution for CO2 in Table 1 is calculated with the corresponding resonance denominator omitted, as was the ZPE given in Ref. 5.
-
-
-
-
53
-
-
33747206030
-
-
note
-
Λ), 1.12 (CCSDTQ-la), 0.32 (CCSDTQ-1b), 0.33 (CC4), and 0.69 (CCSDTQ-3). The conclusions concerning the performance of the approximate quadruples methods for heats of formation are similar to those for total energies; however, the difference between CCSDT(Q) and the more expensive methods is, ultimately, negligible (their use is consequently not justified). We note in passing that heats of formation were also computed using CCSDTQ as well as the aforementioned approximate methods with the cc-pVTZ basis set. However, no significant improvement has been achieved with respect to the experimental values, meaning that again the extra computational cost is not justified.
-
-
-
-
54
-
-
33747324638
-
-
note
-
It is interesting to note that both the HF-SCF and CCSD(T) energies extrapolated with the 345 sequence are more negative than their 456 counterparts, although the former extrapolation tends to give smaller atomization energies in one case (HF-SCF) and larger in the other (CCSD(T)). The latter is rather obvious and sensible: correlation energy always tends to increase atomization energies, and a method that tends to overestimate correlation energies would tend to overestimate binding energies, if the extrapolation error were somewhat systematic. However, for the HF-SCF cases, the extrapolation error (as measured by the difference between 345- and 456-based extrapolations) is larger for free atoms than those in molecules in the cases we have investigated, which is in turn responsible for the underestimated atomization energies. Differences between 345- and 456-based extrapolations(in μH) are 269 (oxygen atom), 111 (nitrogen atom), 35 (carbon atom), 22 (hydrogen atom) [atoms], 239 (OH), 109 (CN), and 190 (CO). It is interesting, indeed a bit odd, that the error for the oxygen atom is the largest.
-
-
-
-
57
-
-
33747255510
-
-
note
-
In many cases, vibrational frequencies are slightly overestimated in cc-pVQZ calculations, with a consequent overestimation of the zero-point energy.
-
-
-
-
58
-
-
33747253611
-
-
(private communication); unpublished results from Active Thermochemical Tables ver. 1.25 using the Core (Argonne) Thermochemical Network ver. 1.048
-
B. Ruscic (private communication); unpublished results from Active Thermochemical Tables ver. 1.25 using the Core (Argonne) Thermochemical Network ver. 1.048.
-
-
-
Ruscic, B.1
|