-
2
-
-
0000319158
-
Collocation at Gaussian points
-
C. DE BOOR AND B. SWARTZ, Collocation at Gaussian points, SIAM J. Numer. Anal., 10 (1973), pp. 582-606.
-
(1973)
SIAM J. Numer. Anal.
, vol.10
, pp. 582-606
-
-
De Boor, C.1
Swartz, B.2
-
4
-
-
0005049005
-
Normal forms of bifurcating periodic orbits
-
Multiparameter Bifurcation Theory, AMS, Providence, RI
-
S.-N. CHOW AND D. WANG, Normal forms of bifurcating periodic orbits, in Multiparameter Bifurcation Theory, Contemp. Math. 56, AMS, Providence, RI, 1986, pp. 9-18.
-
(1986)
Contemp. Math.
, vol.56
, pp. 9-18
-
-
Chow, S.-N.1
Wang, D.2
-
6
-
-
13844255362
-
The fold-flip bifurcation
-
YU. A. KUZNETSOV, H. G. E. MEIJER, AND L. VAN VEEN, The fold-flip bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), pp. 2253-2282.
-
(2004)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.14
, pp. 2253-2282
-
-
Kuznetsov, Yu.A.1
Meijer, H.G.E.2
Van Veen, L.3
-
7
-
-
0003327863
-
Topics in Bifurcation Theory and Applications
-
World Scientific, River Edge, NJ
-
G. IOOSS AND M. ADELMEYER, Topics in Bifurcation Theory and Applications, Adv. Ser. Nonlinear Dynam. 3, World Scientific, River Edge, NJ, 1992.
-
(1992)
Adv. Ser. Nonlinear Dynam.
, vol.3
-
-
Iooss, G.1
Adelmeyer, M.2
-
8
-
-
0003595232
-
-
Springer-Verlag, New York, Heidelberg, Berlin
-
V. I. ARNOLD, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1983.
-
(1983)
Geometrical Methods in the Theory of Ordinary Differential Equations
-
-
Arnold, V.I.1
-
9
-
-
0029640106
-
Models of complex dynamics in nonlinear systems
-
R. GENESIO, A. TESI, AND F. VILLORESI, Models of complex dynamics in nonlinear systems, Systems Control Lett., 25 (1995), pp. 185-192.
-
(1995)
Systems Control Lett.
, vol.25
, pp. 185-192
-
-
Genesio, R.1
Tesi, A.2
Villoresi, F.3
-
12
-
-
0039646695
-
-
Argonne National Laboratory, Argonne, IL
-
A. GRIEWANK, D. JUEDES, AND J. UTKE, ADOL-C: A Package for the Automatic Differentiation of Algorithms Written in C/C++, Version 1.7, Argonne National Laboratory, Argonne, IL, 1996.
-
(1996)
A Package for the Automatic Differentiation of Algorithms Written in C/C++, Version 1.7
-
-
Griewank, A.1
Juedes, D.2
Adol-C, J.U.3
-
13
-
-
0034967327
-
Computing periodic orbits and their bifurcations via automatic differentiation
-
J. GUCKENHEIMER AND B. MELOON, Computing periodic orbits and their bifurcations via automatic differentiation, SIAM J. SCi. Comput., 22 (2000), pp, 951-985.
-
(2000)
SIAM J. SCi. Comput.
, vol.22
, pp. 951-985
-
-
Guckenheimer, J.1
Meloon, B.2
-
14
-
-
27844523001
-
Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues
-
YU. A. KUZNETSOV AND H. G. E. MEIJER, Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues, SIAM J. Sci. Comput., 26 (2005), pp. 1932-1954.
-
(2005)
SIAM J. Sci. Comput.
, vol.26
, pp. 1932-1954
-
-
Kuznetsov, Yu.A.1
Meijer, H.G.E.2
-
15
-
-
0002232810
-
A simple global characterization for normal forms of singular vector fields
-
C. ELPHICK, E. TIRAPEGUI, M. E. BRACHET, P. H. COULLET, AND G. IOOSS, A simple global characterization for normal forms of singular vector fields, Phys. D, 32 (1987), pp. 95-127.
-
(1987)
Phys. D
, vol.32
, pp. 95-127
-
-
Elphick, C.1
Tirapegui, E.2
Brachet, M.E.3
Coullet, P.H.4
Iooss, G.5
-
16
-
-
0042941286
-
Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODEs
-
YU. A. KUZNETSOV, Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODEs, SIAM J. Numer. Anal., 36 (1999), pp. 1104-1124.
-
(1999)
SIAM J. Numer. Anal.
, vol.36
, pp. 1104-1124
-
-
Kuznetsov, Yu.A.1
-
17
-
-
0001669344
-
Normal form reduction for time-periodically driven differential equations
-
C. ELPHICK, G. IOOSS, AND E. TIRAPEGUI, Normal form reduction for time-periodically driven differential equations, Phys. Lett. A, 120 (1987), pp. 459-463.
-
(1987)
Phys. Lett. A
, vol.120
, pp. 459-463
-
-
Elphick, C.1
Iooss, G.2
Tirapegui, E.3
-
18
-
-
38249026752
-
Global characterization of the normal form for a vector field near a closed orbit
-
G. IOOSS, Global characterization of the normal form for a vector field near a closed orbit, J. Differential Equations, 76 (1988), pp. 47-76.
-
(1988)
J. Differential Equations
, vol.76
, pp. 47-76
-
-
Iooss, G.1
-
19
-
-
0003487030
-
-
Concordia University, Montreal, Canada
-
E. J. DOEDEL, A. R. CHAMPNEYS, T. F. FAIRGRIEVE, YU. A. KUZNETSOV, B. SANDSTEDE, AND X. J. WANG, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), Concordia University, Montreal, Canada, ftp.cs.concordia.ca/pub/doedel/auto (1997).
-
(1997)
AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont)
-
-
Doedel, E.J.1
Champneys, A.R.2
Fairgrieve, T.F.3
Kuznetsov, Yu.A.4
Sandstede, B.5
Wang, X.J.6
-
20
-
-
8744230577
-
MATCONT; A MATLAB package for numerical bifurcation analysis of ODEs
-
A. DHOOGE, W. GOVAERTS, AND YU. A. KUZNETSOV, MATCONT; A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), pp. 141-164.
-
(2003)
ACM Trans. Math. Software
, vol.29
, pp. 141-164
-
-
Dhooge, A.1
Govaerts, W.2
Kuznetsov, Yu.A.3
-
21
-
-
0003344657
-
Numerical solution of boundary value problems for ordinary differential equations
-
SIAM, Philadelphia
-
U. M. ASCHER, R. M. M. MATTHEIJ, AND R. D. RUSSELL, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics Appl. Math. 13, SIAM, Philadelphia, 1995.
-
(1995)
Classics Appl. Math.
, vol.13
-
-
Ascher, U.M.1
Mattheij, R.M.M.2
Russell, R.D.3
-
22
-
-
0000378934
-
Numerical analysis and control of bifurcation problems. II. Bifurcation in infinite dimensions
-
E. DOEDEL, H. B. KELLER, AND J.-P. KERNÉVEZ, Numerical analysis and control of bifurcation problems. II. Bifurcation in infinite dimensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1 (1991), pp. 745-772.
-
(1991)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.1
, pp. 745-772
-
-
Doedel, E.1
Keller, H.B.2
Kernévez, J.-P.3
-
23
-
-
2342460324
-
Computation of periodic solution bifurcations in ODEs using bordered systems
-
E. J. DOEDEL, W. GOVAERTS, AND YU. A. KUZNETSOV, Computation of periodic solution bifurcations in ODEs using bordered systems, SIAM J. Numer. Anal., 41 (2003), pp. 401-435.
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, pp. 401-435
-
-
Doedel, E.J.1
Govaerts, W.2
Kuznetsov, Yu.A.3
-
24
-
-
0020876531
-
Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with A → B → C reactions
-
E. J. DOEDEL AND R. P. HEINEMANN, Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with A → B → C reactions, Chem. Eng. Sci., 38 (1983), pp. 1493-1499.
-
(1983)
Chem. Eng. Sci.
, vol.38
, pp. 1493-1499
-
-
Doedel, E.J.1
Heinemann, R.P.2
-
25
-
-
0026866475
-
Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems
-
R. GENESIO AND A. TESI, Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica, 28 (1992), pp. 531-548.
-
(1992)
Automatica
, vol.28
, pp. 531-548
-
-
Genesio, R.1
Tesi, A.2
-
26
-
-
0030235714
-
Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics
-
A. TESI, E. H. ABED, R. GENESIO, AND H. O. WANG, Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics, Automatica, 32 (1996), pp. 1255-1271.
-
(1996)
Automatica
, vol.32
, pp. 1255-1271
-
-
Tesi, A.1
Abed, E.H.2
Genesio, R.3
Wang, H.O.4
-
27
-
-
0031678169
-
On the computation of characteristic multipliers for predicting limit cycle bifurcations
-
G. TORRINI, R. GENESIO, AND A. TESI, On the computation of characteristic multipliers for predicting limit cycle bifurcations, Chaos Solitons Fractals, 9 (1998), pp. 121-133.
-
(1998)
Chaos Solitons Fractals
, vol.9
, pp. 121-133
-
-
Torrini, G.1
Genesio, R.2
Tesi, A.3
-
28
-
-
0038337011
-
CL_MATCONT: A continuation toolbox in MATLAB
-
Melbourne, FL
-
A. DHOOGE, W. GOVAERTS, YU. A. KUZNETSOV, W. MESTROM, AND A. M. RIET, CL_MATCONT: A continuation toolbox in MATLAB, in Proceedings of the 2003 ACM Symposium on Applied Computing, Melbourne, FL, 2003, pp. 161-166.
-
(2003)
Proceedings of the 2003 ACM Symposium on Applied Computing
, pp. 161-166
-
-
Dhooge, A.1
Govaerts, W.2
Kuznetsov, Yu.A.3
Mestrom, W.4
Riet, A.M.5
-
29
-
-
0001444630
-
The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction
-
C. G. STEINMETZ AND R. LARTER, The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction, J. Chem. Phys., 74 (1991), pp. 1388-1396.
-
(1991)
J. Chem. Phys.
, vol.74
, pp. 1388-1396
-
-
Steinmetz, C.G.1
Larter, R.2
-
30
-
-
0038228324
-
Numerical continuation, and computation of normal forms
-
B. Fiedler, ed., North-Holland, Amsterdam
-
W.-J. BEYN, A. CHAMPNEYS, E. DOEDEL, W. GOVAERTS, YU. A. KUZNETSOV, AND B. SANDSTEDE, Numerical continuation, and computation of normal forms, in Handbook of Dynamical Systems, Vol. 2, B. Fiedler, ed., North-Holland, Amsterdam, 2002, pp. 149-219.
-
(2002)
Handbook of Dynamical Systems
, vol.2
, pp. 149-219
-
-
Beyn, W.-J.1
Champneys, A.2
Doedel, E.3
Govaerts, W.4
Kuznetsov, Yu.A.5
Sandstede, B.6
|