메뉴 건너뛰기




Volumn 6, Issue 2, 2006, Pages 187-221

Behavior-based modeling and its application to Email analysis

Author keywords

Anomaly detection; Behavior profiling; Email virus propagations

Indexed keywords

ANOMALY DETECTION; BEHAVIOR PROFILING; EMAIL VIRUS PROPAGATIONS; USER'S (SOCIAL) CLIQUES;

EID: 33747144912     PISSN: 15335399     EISSN: 15335399     Source Type: Journal    
DOI: 10.1145/1149121.1149125     Document Type: Article
Times cited : (72)

References (40)
  • 5
    • 84976668743 scopus 로고
    • Finding all cliques of an undirected graph
    • BRON, C. AND KERBOSCH, J. 1973. Finding all cliques of an undirected graph. Commun. ACM 16, 9, 575-577.
    • (1973) Commun. ACM , vol.16 , Issue.9 , pp. 575-577
    • Bron, C.1    Kerbosch, J.2
  • 6
    • 0028911698 scopus 로고
    • Gauging similarity with n-grams: Language independent categorization of text
    • DAMASHEK, M. 1995. Gauging similarity with n-grams: Language independent categorization of text. In Science, 267, 843-848.
    • (1995) Science , vol.267 , pp. 843-848
    • Damashek, M.1
  • 7
    • 33747099074 scopus 로고    scopus 로고
    • Finding friends and enemies through the analysis of clique dynamics
    • Computer Science Department, Columbia University, New York, NY
    • DAVIS, P. T. 2003. Finding friends and enemies through the analysis of clique dynamics. Tech. rep., Computer Science Department, Columbia University, New York, NY.
    • (2003) Tech. Rep.
    • Davis, P.T.1
  • 8
    • 0023294428 scopus 로고
    • An intrusion-detection model
    • DENNING, D. E. 1987. An intrusion-detection model. IEEE Trans. Softw. Eng., SE-13, 222-232.
    • (1987) IEEE Trans. Softw. Eng. , vol.SE-13 , pp. 222-232
    • Denning, D.E.1
  • 10
    • 4143149628 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • (Jajodia, Barbara, Eds.), Kluwer, Norwell, MA
    • ESKIN, E., ARNOLD, A., PRERAU, M., PORTNOY, L., AND STOLFO, S. J. 2002. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. Data Mining for Security Applications.(Jajodia, Barbara, Eds.), Kluwer, Norwell, MA.
    • (2002) Data Mining for Security Applications
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnoy, L.4    Stolfo, S.J.5
  • 12
    • 2642573975 scopus 로고    scopus 로고
    • Host-based anomaly detection by wrapping file system accesses
    • Columbia University, New York, NY
    • HERSHKOP, S., FERSTER, R., BUI, L. H., WANG, K., AND STOLFO, S. J. 2003. Host-based anomaly detection by wrapping file system accesses. Tech. rep. Columbia University, New York, NY. Go online to http://www.cs.columbia.edu/ids/ publications/.
    • (2003) Tech. Rep.
    • Hershkop, S.1    Ferster, R.2    Bui, L.H.3    Wang, K.4    Stolfo, S.J.5
  • 13
    • 0032313923 scopus 로고    scopus 로고
    • Intrusion detection using sequences of system calls
    • HOFMEYR, S. A., FORREST, S., AND SOMAYAJI, A. 1998. Intrusion detection using sequences of system calls. J. Comput. Secur. 6, 151-180.
    • (1998) J. Comput. Secur. , vol.6 , pp. 151-180
    • Hofmeyr, S.A.1    Forrest, S.2    Somayaji, A.3
  • 15
    • 0004118981 scopus 로고
    • The NIDES Statistical Component: Description and Justification
    • SRI International, Menlo Park, CA
    • JAVITZ, H. S. AND VALDES, A. 1993. The NIDES Statistical Component: Description and Justification. Tech. rep. SRI International, Menlo Park, CA.
    • (1993) Tech. Rep.
    • Javitz, H.S.1    Valdes, A.2
  • 18
    • 77949731575 scopus 로고    scopus 로고
    • Temporal sequence learning and data reduction for anomaly detection
    • LANE, T. AND BRODLEY, C. E. 1999. Temporal sequence learning and data reduction for anomaly detection. ACM Trans. Inform. Syst. Secur., 2, 295-331.
    • (1999) ACM Trans. Inform. Syst. Secur. , vol.2 , pp. 295-331
    • Lane, T.1    Brodley, C.E.2
  • 19
    • 1642397470 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • and Proceedings of the 8th ACM SICKDD International Conference on Knowledge Discovery and Data Mining
    • LEE, W. AND STOLFO, S. 1999. A framework for constructing features and models for intrusion detection systems. In Proceedings of the 1999 IEEE Symposium on Computer Security and Privacy and Proceedings of the 8th ACM SICKDD International Conference on Knowledge Discovery and Data Mining.
    • (1999) Proceedings of the 1999 IEEE Symposium on Computer Security and Privacy
    • Lee, W.1    Stolfo, S.2
  • 24
    • 0344008570 scopus 로고    scopus 로고
    • Detecting novel attacks by identifying anomalous network packet headers
    • Florida Institute of Technology, Melbourne, FL. CS-2001-2
    • MAHONEY, M. V. AND CHAN, P. K. 2001. Detecting novel attacks by identifying anomalous network packet headers. Tech. rep. Florida Institute of Technology, Melbourne, FL. CS-2001-2.
    • (2001) Tech. Rep.
    • Mahoney, M.V.1    Chan, P.K.2
  • 25
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill, New York, NY
    • MITCHELL, T. M. 1997. Machine Learning, McGraw-Hill, New York, NY, 180-183.
    • (1997) Machine Learning , pp. 180-183
    • Mitchell, T.M.1
  • 26
    • 84858941597 scopus 로고    scopus 로고
    • MYSQL. 2002. Go online to www.mysql.org.
    • (2002)
  • 27
    • 37649029105 scopus 로고    scopus 로고
    • Email networks and the spread of computer viruses
    • NEWMAN, M. E., FORREST, S., AND BALTHRUP, J. 2002. Email networks and the spread of computer viruses. Phys. Rev. E 66, 3 (Sept.).
    • (2002) Phys. Rev. E , vol.66 , Issue.3 SEPT.
    • Newman, M.E.1    Forrest, S.2    Balthrup, J.3
  • 28
    • 0027166611 scopus 로고
    • The QBIC project: Querying images by content using color, texture, and shape
    • NIBLACK, W., ET AL. 1993. The QBIC project: Querying images by content using color, texture, and shape. In Proceedings of the SPIE (Feb.).
    • (1993) Proceedings of the SPIE , Issue.FEB.
    • Niblack, W.1
  • 33
    • 0033336136 scopus 로고    scopus 로고
    • Distributed data mining in credit card fraud detection
    • STOLFO, S. J., CHAN, P., AND PRODROMIDIS, A. 1999. Distributed data mining in credit card fraud detection, IEEE Intell. Syst. 14, 6, 67-74.
    • (1999) IEEE Intell. Syst. , vol.14 , Issue.6 , pp. 67-74
    • Stolfo, S.J.1    Chan, P.2    Prodromidis, A.3
  • 34
    • 0036085540 scopus 로고    scopus 로고
    • Why 6? Defining the operational limits of stide, an anomaly-based intrusion detector
    • IEEE Computer Society Press, Los Alamitos, CA
    • TAN, K. M. C. AND MAXION, R. A. 2002. Why 6? Defining the operational limits of stide, an anomaly-based intrusion detector. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society Press, Los Alamitos, CA, 188-201.
    • (2002) Proceedings of the IEEE Symposium on Security and Privacy , pp. 188-201
    • Tan, K.M.C.1    Maxion, R.A.2
  • 39
    • 84948951525 scopus 로고    scopus 로고
    • Throttling viruses: Restricting propagation to defeat malicious mobile code
    • Las Vegas, NV
    • WILLIAMSON, M. M. 2002. Throttling viruses: Restricting propagation to defeat malicious mobile code. In Proceedings of the ACSAC Security Conference (Las Vegas, NV).
    • (2002) Proceedings of the ACSAC Security Conference
    • Williamson, M.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.