-
1
-
-
0031780804
-
On the chance of freak waves at sea
-
White B.S., and Fornberg B. On the chance of freak waves at sea. J. Fluid Mech. 355 (1998) 113-138
-
(1998)
J. Fluid Mech.
, vol.355
, pp. 113-138
-
-
White, B.S.1
Fornberg, B.2
-
2
-
-
3042781172
-
Physical mechanisms of the rogue wave phenomenon
-
Kharif C., and Pelinovsky E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluids 22 (2004) 603-634
-
(2004)
Eur. J. Mech. B Fluids
, vol.22
, pp. 603-634
-
-
Kharif, C.1
Pelinovsky, E.2
-
3
-
-
0000346839
-
Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation
-
Henderson K.L., Peregrine D.H., and Dold J.W. Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29 (1999) 341
-
(1999)
Wave Motion
, vol.29
, pp. 341
-
-
Henderson, K.L.1
Peregrine, D.H.2
Dold, J.W.3
-
4
-
-
0346967121
-
Note on breather type solutions of the NLS as model for freak waves
-
Dysthe K., and Trulsen K. Note on breather type solutions of the NLS as model for freak waves. Phys. Scripta 82 (1999) 48-52
-
(1999)
Phys. Scripta
, vol.82
, pp. 48-52
-
-
Dysthe, K.1
Trulsen, K.2
-
5
-
-
33747128016
-
-
M. Olagnon, G. Athanassoulis (Eds.), Rogue Waves 2000, Ifremer 32, 2001
-
-
-
-
6
-
-
0002557939
-
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media
-
Zakharov V.E., and Shabat A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34 (1972) 62-69
-
(1972)
Sov. Phys. JETP
, vol.34
, pp. 62-69
-
-
Zakharov, V.E.1
Shabat, A.B.2
-
8
-
-
0030283527
-
A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water
-
Trulsen K., and Dysthe K. A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24 (1996) 281
-
(1996)
Wave Motion
, vol.24
, pp. 281
-
-
Trulsen, K.1
Dysthe, K.2
-
9
-
-
0031332690
-
Frequency downshift in three-dimensional wave trains in a deep basin
-
Trulsen K., and Dysthe K. Frequency downshift in three-dimensional wave trains in a deep basin. J. Fluid Mech. 352 (1997) 359-373
-
(1997)
J. Fluid Mech.
, vol.352
, pp. 359-373
-
-
Trulsen, K.1
Dysthe, K.2
-
10
-
-
0034706493
-
The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains
-
Osborne A., Onorato M., and Serio M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys. Lett. A 275 (2000) 386
-
(2000)
Phys. Lett. A
, vol.275
, pp. 386
-
-
Osborne, A.1
Onorato, M.2
Serio, M.3
-
11
-
-
0001522381
-
Geometry of the modulational instability. Part III: Homoclinic orbits for the periodic Sine-Gordon equation
-
Ercolani N., Forest M.G., and McLaughlin D.W. Geometry of the modulational instability. Part III: Homoclinic orbits for the periodic Sine-Gordon equation. Physica D 43 (1990) 349-384
-
(1990)
Physica D
, vol.43
, pp. 349-384
-
-
Ercolani, N.1
Forest, M.G.2
McLaughlin, D.W.3
-
12
-
-
0037124361
-
Homoclinic chaos increases the likelihood of rogue waves
-
Calini A., and Schober C. Homoclinic chaos increases the likelihood of rogue waves. Phys. Lett. A 298 (2002) 335-349
-
(2002)
Phys. Lett. A
, vol.298
, pp. 335-349
-
-
Calini, A.1
Schober, C.2
-
13
-
-
0001353907
-
Focusing of nonlinear wave groups in deep water
-
Kharif C., and Pelinovsky E. Focusing of nonlinear wave groups in deep water. JETP Lett. 73 (2001) 170-175
-
(2001)
JETP Lett.
, vol.73
, pp. 170-175
-
-
Kharif, C.1
Pelinovsky, E.2
-
15
-
-
15844370524
-
Predicting rogue waves in random oceanic sea states
-
Islas A., and Schober C. Predicting rogue waves in random oceanic sea states. Phys. Fluids 17 (2005) 031701-4
-
(2005)
Phys. Fluids
, vol.17
, pp. 031701-4
-
-
Islas, A.1
Schober, C.2
-
16
-
-
33747133855
-
-
N.M. Ercolani, D.W. McLaughlin, Toward a topological classification of integrable PDE's, in: R. Devaney, H. Flaschka, W. Meyer, T. Ratiu (Eds.), MSRI Proc. Workshop on Symplectic Geometry, 1990
-
-
-
-
17
-
-
0001522381
-
Geometry of the modulational instability III. Homoclinic orbits
-
Ercolani N., Forest M.G., and McLaughlin D. Geometry of the modulational instability III. Homoclinic orbits. Physica D 43 (1990) 349
-
(1990)
Physica D
, vol.43
, pp. 349
-
-
Ercolani, N.1
Forest, M.G.2
McLaughlin, D.3
-
18
-
-
0004799048
-
Explicit formulas for solutions of a nonlinear Schrödinger equation
-
Its A.R., and Kotljarov V.P. Explicit formulas for solutions of a nonlinear Schrödinger equation. Dokl. Akad. Nauk Ukrain. SSR Ser. A 1051 (1976) 965-968
-
(1976)
Dokl. Akad. Nauk Ukrain. SSR Ser. A
, vol.1051
, pp. 965-968
-
-
Its, A.R.1
Kotljarov, V.P.2
-
19
-
-
0010989303
-
Methods of algebraic geometry in the theory of nonlinear equations
-
Krichever I.M. Methods of algebraic geometry in the theory of nonlinear equations. Russian Math. Surv. 32 (1977) 185-213
-
(1977)
Russian Math. Surv.
, vol.32
, pp. 185-213
-
-
Krichever, I.M.1
-
20
-
-
0003462187
-
-
Springer, Berlin
-
Belokolos E.D., Bobenko A.I., Enol'skii V.Z., Its A.R., and Matveev V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations (1994), Springer, Berlin
-
(1994)
Algebro-Geometric Approach to Nonlinear Integrable Equations
-
-
Belokolos, E.D.1
Bobenko, A.I.2
Enol'skii, V.Z.3
Its, A.R.4
Matveev, V.B.5
-
21
-
-
0001127399
-
Chaotic and homoclinic behavior for numerical discretizations of the nonlinear Schrödinger equation
-
McLaughlin D.W., and Schober C.M. Chaotic and homoclinic behavior for numerical discretizations of the nonlinear Schrödinger equation. Physica D 57 (1992) 447-465
-
(1992)
Physica D
, vol.57
, pp. 447-465
-
-
McLaughlin, D.W.1
Schober, C.M.2
-
23
-
-
0008048043
-
N-modulation signals in a single-mode optical waveguide under nonlinear conditions
-
Akhmediev N.N., Korneev V.I., and Mitskevich N.V. N-modulation signals in a single-mode optical waveguide under nonlinear conditions. Sov. Phys. JETP 67 (1988) 1
-
(1988)
Sov. Phys. JETP
, vol.67
, pp. 1
-
-
Akhmediev, N.N.1
Korneev, V.I.2
Mitskevich, N.V.3
-
26
-
-
18244424907
-
Long time dynamics of the modulational instability of deep water waves
-
Ablowitz M., Hammack J., Henderson D., and Schober C. Long time dynamics of the modulational instability of deep water waves. Physica D 152-153 (2001) 416-433
-
(2001)
Physica D
, vol.152-153
, pp. 416-433
-
-
Ablowitz, M.1
Hammack, J.2
Henderson, D.3
Schober, C.4
-
27
-
-
0003478288
-
-
Springer-Verlag, New York
-
Guckenheimer J., and Holmes P.J. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer-Verlag, New York
-
(1983)
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.J.2
-
28
-
-
0008495183
-
Orbits homoclinic to resonances: the Hamiltonian case
-
Haller G., and Wiggins S. Orbits homoclinic to resonances: the Hamiltonian case. Physica D 66 (1992) 298-346
-
(1992)
Physica D
, vol.66
, pp. 298-346
-
-
Haller, G.1
Wiggins, S.2
-
29
-
-
33747141949
-
-
D. Cai, D.W. McLaughlin, K.T.R. McLaughlin, The nonlinear Schrödinger equation as both a PDE and a dynamical system, Preprint, 1995
-
-
-
-
30
-
-
0033089851
-
Homoclinic tubes in the nonlinear Schrödinger equation under Hamiltonian perturbations
-
Li Y. Homoclinic tubes in the nonlinear Schrödinger equation under Hamiltonian perturbations. Progr. Theoret. Phys. 101 (1999) 559-577
-
(1999)
Progr. Theoret. Phys.
, vol.101
, pp. 559-577
-
-
Li, Y.1
-
31
-
-
0030506927
-
Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation
-
Li Y., McLaughlin D.W., Shatah J., and Wiggins S. Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation. Comm. Pure Appl. Math. 49 (1996) 1175-1255
-
(1996)
Comm. Pure Appl. Math.
, vol.49
, pp. 1175-1255
-
-
Li, Y.1
McLaughlin, D.W.2
Shatah, J.3
Wiggins, S.4
-
32
-
-
0034923179
-
Chaotic dynamics for a symmetry breaking perturbation of the NLS equation
-
Calini A., and Schober C.M. Chaotic dynamics for a symmetry breaking perturbation of the NLS equation. J. Math. Comput. Simul. 55 (2001) 351-364
-
(2001)
J. Math. Comput. Simul.
, vol.55
, pp. 351-364
-
-
Calini, A.1
Schober, C.M.2
|