메뉴 건너뛰기




Volumn 13, Issue 6, 2006, Pages 473-485

An efficient iterative method for solving the matrix equation AXB + CYD = E

Author keywords

Iterative method; Least norm solution; Matrix equation; Matrix nearness problem; Optimal approximation solution

Indexed keywords


EID: 33746904417     PISSN: 10705325     EISSN: None     Source Type: Journal    
DOI: 10.1002/nla.470     Document Type: Article
Times cited : (40)

References (12)
  • 3
    • 0042317794 scopus 로고
    • Singular value and generalized value decompositions and the solution of linear matrix equations
    • Chu KE. Singular value and generalized value decompositions and the solution of linear matrix equations. Linear Algebra and its Applications 1987; 87:83-98.
    • (1987) Linear Algebra and Its Applications , vol.87 , pp. 83-98
    • Chu, K.E.1
  • 6
    • 33746920682 scopus 로고    scopus 로고
    • The solutions of matrix equation AXC + BYD = E and its optimal approximation
    • in Chinese
    • Peng Z-Y. The solutions of matrix equation AXC + BYD = E and its optimal approximation. Mathematics Theory and Applications 2002; 22(2):99-103 (in Chinese).
    • (2002) Mathematics Theory and Applications , vol.22 , Issue.2 , pp. 99-103
    • Peng, Z.-Y.1
  • 9
    • 0018030821 scopus 로고
    • Optimization procedure to correct stiffness and flexibility matrices using vibration tests
    • Baruch M. Optimization procedure to correct stiffness and flexibility matrices using vibration tests. American Institute of Aeronautics and Astronautics (AIAA) Journal 1978; 16:1208-1210.
    • (1978) American Institute of Aeronautics and Astronautics (AIAA) Journal , vol.16 , pp. 1208-1210
    • Baruch, M.1
  • 11
    • 0002310418 scopus 로고
    • Optimal application of a matrix under spectral restriction
    • Jiang Z, Lu Q. Optimal application of a matrix under spectral restriction. Mathematica Numerica Sinica 1988; 1:47-52.
    • (1988) Mathematica Numerica Sinica , vol.1 , pp. 47-52
    • Jiang, Z.1    Lu, Q.2
  • 12
    • 0000379660 scopus 로고
    • Computing a nearest symmetric positive semidefinite matrix
    • Higham NJ. Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 1988; 103:103-118.
    • (1988) Linear Algebra and Its Applications , vol.103 , pp. 103-118
    • Higham, N.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.