-
2
-
-
84961493604
-
A Mandelbrot set for pairs of linear maps
-
M. F. BARNSLEY and A. N. HARRINGTON. A Mandelbrot set for pairs of linear maps. Phisica 15D (1985), 421-432.
-
(1985)
Phisica
, vol.15 D
, pp. 421-432
-
-
Barnsley, M.F.1
Harrington, A.N.2
-
5
-
-
0000942614
-
On the fundamental geometrical properties of linearly measurable plane sets of points II
-
A. S. BESICOVITCH. On the fundamental geometrical properties of linearly measurable plane sets of points II. Math. Annalen 115 (1938), 296-329.
-
(1938)
Math. Annalen
, vol.115
, pp. 296-329
-
-
Besicovitch, A.S.1
-
7
-
-
21744456350
-
Correlation dimension for iterated function systems
-
W. CHIN, B. HUNT and J. A. YORKE. Correlation dimension for iterated function systems. Trans. Amer. Math. Soc. 349 (1997), 1783-1796.
-
(1997)
Trans. Amer. Math. Soc.
, vol.349
, pp. 1783-1796
-
-
Chin, W.1
Hunt, B.2
Yorke, J.A.3
-
9
-
-
0003292137
-
The Hausdorff dimension of some fractals and attractors of overlapping construction
-
K. FALCONER. The Hausdorff dimension of some fractals and attractors of overlapping construction. J. Stat. Physics 47, Nos. 1/2, 1987.
-
(1987)
J. Stat. Physics
, vol.47
, Issue.1-2
-
-
Falconer, K.1
-
10
-
-
84976003309
-
The Hausdorff dimension of self-affine fractals
-
K. FALCONER. The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103 (1988), 339-350.
-
(1988)
Math. Proc. Camb. Phil. Soc.
, vol.103
, pp. 339-350
-
-
Falconer, K.1
-
11
-
-
84966211167
-
Dimensions and measures of quasi-self-similar sets
-
K. FALCONER. Dimensions and measures of quasi-self-similar sets. Proc. Amer. Math. Soc. 106 (1989), 543-554.
-
(1989)
Proc. Amer. Math. Soc.
, vol.106
, pp. 543-554
-
-
Falconer, K.1
-
14
-
-
21944451974
-
The Hausdorff dimension of graphs of Weierstrass functions
-
B. HUNT. The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998), 791-800.
-
(1998)
Proc. Amer. Math. Soc.
, vol.126
, pp. 791-800
-
-
Hunt, B.1
-
15
-
-
0001265433
-
Fractals and self-similarity
-
J. E. HUTCHINSON. Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713-747.
-
(1981)
Indiana Univ. Math. J.
, vol.30
, pp. 713-747
-
-
Hutchinson, J.E.1
-
17
-
-
84974040590
-
On Hausdorff dimension of projections
-
R. KAUFMAN. On Hausdorff dimension of projections. Mathematika 15 (1968), 153-155.
-
(1968)
Mathematika
, vol.15
, pp. 153-155
-
-
Kaufman, R.1
-
19
-
-
0001523338
-
Projecting the one-dimensional Sierpinski gasket
-
R. KENYON. Projecting the one-dimensional Sierpinski gasket. Israel J. Math. 97 (1997), 221-238.
-
(1997)
Israel J. Math.
, vol.97
, pp. 221-238
-
-
Kenyon, R.1
-
20
-
-
0000416849
-
On the dimension of some graphs
-
F. LEDRAPPIER. On the dimension of some graphs. Contemporary Math. 135 (1992), 285-293.
-
(1992)
Contemporary Math.
, vol.135
, pp. 285-293
-
-
Ledrappier, F.1
-
21
-
-
84963103615
-
Some fundamental geometrical properties of plane sets of fractional dimensions
-
J. MARSTRAND. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. 4 (1954), 257-302.
-
(1954)
Proc. London Math. Soc.
, vol.4
, pp. 257-302
-
-
Marstrand, J.1
-
22
-
-
0000528266
-
Orthogonal projections, Riesz capacities and Minkowski content
-
P. MATTILA. Orthogonal projections, Riesz capacities and Minkowski content. Indiana University Math. J. 39 (1990), 185-198.
-
(1990)
Indiana University Math. J.
, vol.39
, pp. 185-198
-
-
Mattila, P.1
-
24
-
-
0001055201
-
Zeros of polynomials with 0,1 coefficients
-
A. M. ODLYZKO and B. POONEN. Zeros of polynomials with 0,1 coefficients. L'Enseignement Math. 39 (1993), 317-348.
-
(1993)
L'Enseignement Math.
, vol.39
, pp. 317-348
-
-
Odlyzko, A.M.1
Poonen, B.2
-
25
-
-
0010564057
-
On the β-expansions of real numbers
-
W. PARRY. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
-
(1960)
Acta Math. Acad. Sci. Hungar.
, vol.11
, pp. 401-416
-
-
Parry, W.1
-
27
-
-
0030497277
-
Absolute continuity of Bernoulli convolutions, a simple proof
-
Y. PERES and B. SOLOMYAK. Absolute continuity of Bernoulli convolutions, a simple proof. Math. Research Letters 3:2 (1996), 231-239.
-
(1996)
Math. Research Letters
, vol.3
, Issue.2
, pp. 231-239
-
-
Peres, Y.1
Solomyak, B.2
-
28
-
-
85013315996
-
Self-similar measures and intersections of Cantor sets
-
to appear
-
Y. PERES and B. SOLOMYAK. Self-similar measures and intersections of Cantor sets. Trans. Amer. Math. Soc., to appear.
-
Trans. Amer. Math. Soc.
-
-
Peres, Y.1
Solomyak, B.2
-
30
-
-
0040341424
-
Representations for real numbers and their ergodic properties
-
A. RÉNYI. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
-
(1957)
Acta Math. Acad. Sci. Hungar.
, vol.8
, pp. 477-493
-
-
Rényi, A.1
-
31
-
-
0000922897
-
The Hausdorff dimension of λ-expansions with deleted digits
-
M. POLLICOTT and K. SIMON. The Hausdorff dimension of λ-expansions with deleted digits. Trans. Amer. Math. Soc. 347 (1995), 967-983.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, pp. 967-983
-
-
Pollicott, M.1
Simon, K.2
-
32
-
-
0000690674
-
On Hausdorff dimension of some fractal sets
-
F. PRZYTYCKI and M. URBAŃSKI. On Hausdorff dimension of some fractal sets. Studia Mathematica 93 (1989), 155-186.
-
(1989)
Studia Mathematica
, vol.93
, pp. 155-186
-
-
Przytycki, F.1
Urbański, M.2
-
33
-
-
84966239752
-
Separation properties for self-similar sets
-
A. SCHIEF. Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122 (1994), 111-115.
-
(1994)
Proc. Amer. Math. Soc.
, vol.122
, pp. 111-115
-
-
Schief, A.1
-
34
-
-
0000561288
-
Most β shifts have bad ergodic properties
-
J. SCHMELING. Most β shifts have bad ergodic properties. Ergodic Th. Dynam. Sys. 17 (1997), 675-694.
-
(1997)
Ergodic Th. Dynam. Sys.
, vol.17
, pp. 675-694
-
-
Schmeling, J.1
-
35
-
-
0000351341
-
Algebraic integers whose conjugates lie in the unit circle
-
C. L. SIEGEL. Algebraic integers whose conjugates lie in the unit circle. Duke Math. J. 11 (1944), 597-602.
-
(1944)
Duke Math. J.
, vol.11
, pp. 597-602
-
-
Siegel, C.L.1
-
36
-
-
0003310263
-
Hausdorff dimension for non-invertible maps
-
K. SIMON. Hausdorff dimension for non-invertible maps. Ergodic Th. Dynam. Sys. 13 (1993), 199-212.
-
(1993)
Ergodic Th. Dynam. Sys.
, vol.13
, pp. 199-212
-
-
Simon, K.1
-
37
-
-
0000155997
-
Overlapping cylinders: The size of a dynamically defined Cantor-set
-
d-Actions
-
d-Actions, LMS Lecture Notes Series 228 (1996), 259-272.
-
(1996)
LMS Lecture Notes Series
, vol.228
, pp. 259-272
-
-
Simon, K.1
-
38
-
-
84963057031
-
Conjugates of beta-numbers and the zero-free domain for a class of analytic functions
-
B. SOLOMYAK. Conjugates of beta-numbers and the zero-free domain for a class of analytic functions. Proc. London Math. Soc. 68 (1994), 477-498.
-
(1994)
Proc. London Math. Soc.
, vol.68
, pp. 477-498
-
-
Solomyak, B.1
-
39
-
-
0000660967
-
1 (an Erdös problem)
-
1 (an Erdös problem). Annals of Math. 142 (1995), 611-625.
-
(1995)
Annals of Math.
, vol.142
, pp. 611-625
-
-
Solomyak, B.1
-
40
-
-
0000826876
-
A simple example of a continuous function without derivative
-
T. TAKAGI. A simple example of a continuous function without derivative. Proc. Phys. Math. Soc. Japan 1 (1903), 176-177.
-
(1903)
Proc. Phys. Math. Soc. Japan
, vol.1
, pp. 176-177
-
-
Takagi, T.1
|