-
1
-
-
0008988785
-
A statistical theorem of set addition
-
Balog A., and Szemerédi E. A statistical theorem of set addition. Combinatorica 14 (1994) 263-268
-
(1994)
Combinatorica
, vol.14
, pp. 263-268
-
-
Balog, A.1
Szemerédi, E.2
-
2
-
-
0005785247
-
Structure of sets with small sumset
-
Structure Theory of Set Addition
-
Bilu Y. Structure of sets with small sumset. Structure Theory of Set Addition. Astérisque 258 (1999) 77-108
-
(1999)
Astérisque
, vol.258
, pp. 77-108
-
-
Bilu, Y.1
-
3
-
-
33746779235
-
-
Mei-Chu Chang, A polynomial bound in Freiman's theorem, preprint
-
-
-
-
5
-
-
0013540428
-
On linear combinatorics I
-
Elekes G. On linear combinatorics I. Combinatorica 17 4 (1997) 447-458
-
(1997)
Combinatorica
, vol.17
, Issue.4
, pp. 447-458
-
-
Elekes, G.1
-
6
-
-
0032427351
-
On linear combinatorics II
-
Elekes G. On linear combinatorics II. Combinatorica 18 1 (1998) 13-25
-
(1998)
Combinatorica
, vol.18
, Issue.1
, pp. 13-25
-
-
Elekes, G.1
-
7
-
-
0039449880
-
A problem on polynomials
-
Elekes G. A problem on polynomials. Discrete Comput. Geom. 19 (1998) 383-389
-
(1998)
Discrete Comput. Geom.
, vol.19
, pp. 383-389
-
-
Elekes, G.1
-
8
-
-
0037972198
-
A note on the number of distinct distances
-
Elekes G. A note on the number of distinct distances. Period. Math. Hungar. 38 3 (1999) 173-177
-
(1999)
Period. Math. Hungar.
, vol.38
, Issue.3
, pp. 173-177
-
-
Elekes, G.1
-
9
-
-
0039522082
-
On linear combinatorics III
-
Elekes G. On linear combinatorics III. Combinatorica 19 1 (1999) 43-53
-
(1999)
Combinatorica
, vol.19
, Issue.1
, pp. 43-53
-
-
Elekes, G.1
-
10
-
-
0035507249
-
On combinatorics of projective mappings
-
Elekes G., and Király Z. On combinatorics of projective mappings. J. Algebraic Combin. 14 (2001) 183-197
-
(2001)
J. Algebraic Combin.
, vol.14
, pp. 183-197
-
-
Elekes, G.1
Király, Z.2
-
11
-
-
0042494565
-
A combinatorial problem on polynomials and rational functions
-
Elekes G., and Rónyai L. A combinatorial problem on polynomials and rational functions. J. Combin. Theory Ser. A 89 (2000) 1-20
-
(2000)
J. Combin. Theory Ser. A
, vol.89
, pp. 1-20
-
-
Elekes, G.1
Rónyai, L.2
-
12
-
-
33746769224
-
-
G. Elekes, E. Szabó, How to find groups?, in preparation
-
-
-
-
13
-
-
0003228971
-
Foundations of a Structural Theory of Set Addition
-
Amer. Math. Soc., Providence, RI translation of Nachala strukturnoi teorii slozheniia mnozhestv, Kazan, 1966
-
Freiman G. Foundations of a Structural Theory of Set Addition. Transl. Math. Monogr. vol. 37 (1973), Amer. Math. Soc., Providence, RI translation of Nachala strukturnoi teorii slozheniia mnozhestv, Kazan, 1966
-
(1973)
Transl. Math. Monogr.
, vol.37
-
-
Freiman, G.1
-
14
-
-
0032361262
-
A new proof of Szemerédi's theorem for arithmetic progressions of length four
-
Gowers W.T. A new proof of Szemerédi's theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8 (1998) 529-551
-
(1998)
Geom. Funct. Anal.
, vol.8
, pp. 529-551
-
-
Gowers, W.T.1
-
15
-
-
0038196897
-
The number of homothetic subsets
-
Graham R.L., and Nešetřil J. (Eds), Springer-Verlag, New York
-
Laczkovich M., and Ruzsa I.Z. The number of homothetic subsets. In: Graham R.L., and Nešetřil J. (Eds). The Mathematics of P. Erdo{combining double acute accent}s, vol. 2 (1997), Springer-Verlag, New York 294-302
-
(1997)
The Mathematics of P. Erdo{combining double acute accent}s, vol. 2
, pp. 294-302
-
-
Laczkovich, M.1
Ruzsa, I.Z.2
-
16
-
-
31744445052
-
On the cardinality of A + A and A - A
-
Combinatorics. Keszthely, 1976, North-Holland, Budapest
-
Ruzsa I.Z. On the cardinality of A + A and A - A. Combinatorics. Keszthely, 1976. Colloq. Math. Soc. János Bolyai vol. 18 (1978), North-Holland, Budapest 933-938
-
(1978)
Colloq. Math. Soc. János Bolyai
, vol.18
, pp. 933-938
-
-
Ruzsa, I.Z.1
-
17
-
-
0013481579
-
An application of graph theory to additive number theory
-
Ruzsa I.Z. An application of graph theory to additive number theory. Scientia Ser. A 3 (1989) 97-109
-
(1989)
Scientia Ser. A
, vol.3
, pp. 97-109
-
-
Ruzsa, I.Z.1
-
18
-
-
0043149640
-
Addendum to: An application of graph theory to additive number theory
-
Ruzsa I.Z. Addendum to: An application of graph theory to additive number theory. Scientia Ser. A 4 (1990/91) 93-94
-
(1990)
Scientia Ser. A
, vol.4
, pp. 93-94
-
-
Ruzsa, I.Z.1
-
19
-
-
51249169996
-
Arithmetical progressions and the number of sums
-
Ruzsa I.Z. Arithmetical progressions and the number of sums. Period. Math. Hungar. 25 (1992) 105-111
-
(1992)
Period. Math. Hungar.
, vol.25
, pp. 105-111
-
-
Ruzsa, I.Z.1
-
20
-
-
0001686857
-
Generalized arithmetical progressions and sumsets
-
Ruzsa I.Z. Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65 (1994) 379-388
-
(1994)
Acta Math. Hungar.
, vol.65
, pp. 379-388
-
-
Ruzsa, I.Z.1
-
21
-
-
0005877097
-
An analog of Freiman's theorem in groups
-
Structure Theory of Set Addition
-
Ruzsa I.Z. An analog of Freiman's theorem in groups. Structure Theory of Set Addition. Astérisque 258 (1999) 323-326
-
(1999)
Astérisque
, vol.258
, pp. 323-326
-
-
Ruzsa, I.Z.1
-
22
-
-
0012954691
-
On the sets of directions determined by n points
-
Scott P.R. On the sets of directions determined by n points. Amer. Math. Monthly 77 (1970) 502-505
-
(1970)
Amer. Math. Monthly
, vol.77
, pp. 502-505
-
-
Scott, P.R.1
-
23
-
-
0039753643
-
2n non-collinear points determine at least 2n directions
-
Ungar P. 2n non-collinear points determine at least 2n directions. J. Combin. Theory 33 (1982) 343-347
-
(1982)
J. Combin. Theory
, vol.33
, pp. 343-347
-
-
Ungar, P.1
|