-
1
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I., Weston, J., Barnhill, S., Vapnik, V: Gene selection for cancer classification using support vector machines. Machine Learning. 46 (2002) 389-422.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
2
-
-
0037776352
-
-
Technical report, Department of Biostatistics, Harvard School of Public Health
-
Zhang, X., Wong, W.: Recursive sample classification and gene selection based on SVM: method and software description, Technical report, Department of Biostatistics, Harvard School of Public Health (2001).
-
(2001)
Recursive Sample Classification and Gene Selection Based on SVM: Method and Software Description
-
-
Zhang, X.1
Wong, W.2
-
3
-
-
27944509227
-
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm
-
Mao, Y., Zhou, X., Pi, D., Wong, S., Sun, Y.: Parameters selection in gene selection using Gaussian Kernel support vector machines by genetic algorithm. Journal of Zhejiang University Science. 10 (2005) 961-973.
-
(2005)
Journal of Zhejiang University Science
, vol.10
, pp. 961-973
-
-
Mao, Y.1
Zhou, X.2
Pi, D.3
Wong, S.4
Sun, Y.5
-
5
-
-
77952749766
-
Performance analysis of support vector machines with Gaussian kernel
-
Zhang, X., Liu. Y.: Performance Analysis of Support Vector Machines with Gaussian Kernel. Journal of Computer Engineering in China. 8 (2003) 22-25.
-
(2003)
Journal of Computer Engineering in China
, vol.8
, pp. 22-25
-
-
Zhang, X.1
Liu, Y.2
-
6
-
-
0036161011
-
Choosing kernel parameters for support vector machines
-
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing kernel parameters for support vector machines. Machine learning 46 (2002) 131-159.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
7
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
Khan, J., Wei, J., Ringnr, M., Saal, L., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C., Peterson, C., Meltzer, P.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicince. 7 (2001) 673-679.
-
(2001)
Nature Medicince
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.2
Ringnr, M.3
Saal, L.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.9
Peterson, C.10
Meltzer, P.11
-
8
-
-
27744552855
-
Gene selection using logistic regressions based on AIC, BIC and MDL criteria
-
Zhou, X., Wang, X., Dougherty, E.: Gene Selection Using Logistic Regressions Based on AIC, BIC and MDL Criteria. Journal of new mathematics and natural computation. 1 (2005) 129-145.
-
(2005)
Journal of New Mathematics and Natural Computation
, vol.1
, pp. 129-145
-
-
Zhou, X.1
Wang, X.2
Dougherty, E.3
-
9
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97 (2002) 77-87.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
10
-
-
1542637078
-
A Bayesian approach to nonlinear probit gene selection and classification
-
Zhou, X., Wang, X., Dougherty, E.: A Bayesian approach to nonlinear probit gene selection and classification. Journal of Franklin Institute. 341 (2004) 137-156.
-
(2004)
Journal of Franklin Institute
, vol.341
, pp. 137-156
-
-
Zhou, X.1
Wang, X.2
Dougherty, E.3
|