메뉴 건너뛰기




Volumn 10, Issue , 2003, Pages 62-71

The derivative nonlinear schrödinger equation in analytic classes

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33746634286     PISSN: 14029251     EISSN: 17760852     Source Type: Journal    
DOI: 10.2991/jnmp.2003.10.s1.5     Document Type: Article
Times cited : (12)

References (24)
  • 2
    • 34250084341 scopus 로고
    • Fourier Transform Restriction Phenomena for Certain Lattice Subsets and Applications to Nonlinear Evolution Equations
    • 209–262
    • Bourgain, J. 1993. Fourier Transform Restriction Phenomena for Certain Lattice Subsets and Applications to Nonlinear Evolution Equations. GAFA, 3:107–156. 209–262
    • (1993) GAFA , vol.3 , pp. 107-156
    • Bourgain, J.1
  • 6
    • 33746636159 scopus 로고
    • Gevrey Class Regularity for the Solutions of the Navier–Stokes Equations
    • Foias, C, and Temam, R. 1989. Gevrey Class Regularity for the Solutions of the Navier–Stokes Equations. J. Funct. Anal., 87:359–369.
    • (1989) J. Funct. Anal. , vol.87 , pp. 359-369
    • Foias, C.1    Temam, R.2
  • 7
    • 0031574596 scopus 로고    scopus 로고
    • On the Cauchy Problem for the Zakharov System
    • Ginibre, J, Tsutsumi, Y, and Velo, G. 1997. On the Cauchy Problem for the Zakharov System. J. Funct. Anal., 151:384–436.
    • (1997) J. Funct. Anal. , vol.151 , pp. 384-436
    • Ginibre, J.1    Tsutsumi, Y.2    Velo, G.3
  • 8
    • 0012860508 scopus 로고    scopus 로고
    • Local Well-Posedness of the Generalized Korteweg-de Vries Equation in Spaces of Analytic Functions
    • Grujić, Z, and Kalisch, H. 2002. Local Well-Posedness of the Generalized Korteweg-de Vries Equation in Spaces of Analytic Functions. Diff. Int. Eq., 15:1325–1334.
    • (2002) Diff. Int. Eq. , vol.15 , pp. 1325-1334
    • Grujić, Z.1    Kalisch, H.2
  • 9
    • 0012812499 scopus 로고
    • Analyticity of Solutions of the Korteweg-de Vries Equation
    • Hayashi, N. 1991. Analyticity of Solutions of the Korteweg-de Vries Equation. SIAM J. Math. Anal., 22:1738–1743.
    • (1991) SIAM J. Math. Anal. , vol.22 , pp. 1738-1743
    • Hayashi, N.1
  • 10
    • 84973997911 scopus 로고
    • Solutions of the (Generalized) Korteweg-de Vries Equation in the Bergman and Szegö Spaces on a Sector
    • Hayashi, N. 1991. Solutions of the (Generalized) Korteweg-de Vries Equation in the Bergman and Szegö Spaces on a Sector. Duke Math. J., 62:575–591.
    • (1991) Duke Math. J. , vol.62 , pp. 575-591
    • Hayashi, N.1
  • 11
    • 84973999324 scopus 로고
    • Global Existence of Small Analytic Solutions to Nonlinear Schrödinger Equations
    • Hayashi, N. 1990. Global Existence of Small Analytic Solutions to Nonlinear Schrödinger Equations. Duke Math. J., 60:717–727.
    • (1990) Duke Math. J. , vol.60 , pp. 717-727
    • Hayashi, N.1
  • 12
    • 0001729775 scopus 로고
    • The Initial Value Problem for the Derivative Nonlinear Schrödinger Equation in the Energy Space
    • Hayashi, N. 1993. The Initial Value Problem for the Derivative Nonlinear Schrödinger Equation in the Energy Space. Nonlin. Anal., 20:823–833.
    • (1993) Nonlin. Anal. , vol.20 , pp. 823-833
    • Hayashi, N.1
  • 13
    • 21844520250 scopus 로고
    • Finite Energy Solutions of Nonlinear Schrödinger Equations of Derivative Type
    • Hayashi, N, and Ozawa, T. 1994. Finite Energy Solutions of Nonlinear Schrödinger Equations of Derivative Type. SIAM J. Math. Anal., 25:1488–1503.
    • (1994) SIAM J. Math. Anal. , vol.25 , pp. 1488-1503
    • Hayashi, N.1    Ozawa, T.2
  • 14
    • 0002770583 scopus 로고
    • On the Derivative Nonlinear Schrödinger Equation
    • Hayashi, N, and Ozawa, T. 1992. On the Derivative Nonlinear Schrödinger Equation. Phys., D55:14–36.
    • (1992) Phys. , vol.D55 , pp. 14-36
    • Hayashi, N.1    Ozawa, T.2
  • 15
    • 84972525950 scopus 로고
    • Remarks on Nonlinear Schrödinger Equations in One Space Dimension
    • Hayashi, N, and Ozawa, T. 1994. Remarks on Nonlinear Schrödinger Equations in One Space Dimension. Diff. Int. Eq., 7:453–461.
    • (1994) Diff. Int. Eq. , vol.7 , pp. 453-461
    • Hayashi, N.1    Ozawa, T.2
  • 17
    • 84974004169 scopus 로고
    • On the Cauchy Problem for the Korteweg-deVries Equation in Sobolev Spaces of Negative Indices
    • Kenig, C E, Ponce, G, and Vega, L. 1993. On the Cauchy Problem for the Korteweg-deVries Equation in Sobolev Spaces of Negative Indices. Duke Math. J., 71:1–20.
    • (1993) Duke Math. J. , vol.71 , pp. 1-20
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 18
    • 0030528276 scopus 로고    scopus 로고
    • A Bilinear Estimate with Applications to the KdV Equation
    • Kenig, C E, Ponce, G, and Vega, L. 1996. A Bilinear Estimate with Applications to the KdV Equation. J. Am. Math. Soc., 9:573–603.
    • (1996) J. Am. Math. Soc. , vol.9 , pp. 573-603
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 19
    • 33645897344 scopus 로고    scopus 로고
    • Quadratic Forms for the 1-D Semilinear Schrödinger Equation
    • Kenig, C E, Ponce, G, and Vega, L. 1996. Quadratic Forms for the 1-D Semilinear Schrödinger Equation. Trans. Amer. Math. Soc., 348:3323–3353.
    • (1996) Trans. Amer. Math. Soc. , vol.348 , pp. 3323-3353
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 20
    • 0001969794 scopus 로고
    • Oscillatory Integrals and Regularity of Dispersive Equations
    • Kenig, C E, Ponce, G, and Vega, L. 1991. Oscillatory Integrals and Regularity of Dispersive Equations. Indiana Univ. Math. J., 40:33–69.
    • (1991) Indiana Univ. Math. J. , vol.40 , pp. 33-69
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 21
    • 84968504995 scopus 로고
    • A Strong Type (2, 2) Estimate for a Maximal Operator Associated to the Schrödinger Equation
    • Kenig, C E, and Ruiz, A. 1983. A Strong Type (2, 2) Estimate for a Maximal Operator Associated to the Schrödinger Equation. Trans. Amer. Math. Soc., 280:239–246.
    • (1983) Trans. Amer. Math. Soc. , vol.280 , pp. 239-246
    • Kenig, C.E.1    Ruiz, A.2
  • 22
    • 0001064535 scopus 로고    scopus 로고
    • Well-Posedness for the One-Dimensional Nonlinear Schrödinger Equation with the Derivative Nonlinearity
    • Takaoka, H. 1999. Well-Posedness for the One-Dimensional Nonlinear Schrödinger Equation with the Derivative Nonlinearity. Adv. Diff. Eq., 4:561–580.
    • (1999) Adv. Diff. Eq. , vol.4 , pp. 561-580
    • Takaoka, H.1
  • 23
    • 23844502114 scopus 로고    scopus 로고
    • Well-Posedness for the Higher Order Nonlinear Schrödinger Equation
    • Takaoka, H. 2000. Well-Posedness for the Higher Order Nonlinear Schrödinger Equation. Adv. Math. Sci. Appl., 10:149–171.
    • (2000) Adv. Math. Sci. Appl. , vol.10 , pp. 149-171
    • Takaoka, H.1
  • 24
    • 0002019745 scopus 로고    scopus 로고
    • Global Well-Posedness for Schrödinger Equations with Derivative in a Nonlinear Term and Data in Low-Order Sobolev Spaces
    • Takaoka, H. 2001. Global Well-Posedness for Schrödinger Equations with Derivative in a Nonlinear Term and Data in Low-Order Sobolev Spaces. Electron. J. Diff. Eq.,:1–23.
    • (2001) Electron. J. Diff. Eq. , pp. 1-23
    • Takaoka, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.