-
1
-
-
0347946012
-
Heuristics and mathematical representation in Einstein's search for a gravitational field equation
-
Renn J and Sauer T 1998 Heuristics and mathematical representation in Einstein's search for a gravitational field equation History of General Relativity (Einstein Studies vol 7) ed H Goenner, J Renn and J Ritter (Cambridge, MA: Birkhäuser) pp 87-125
-
(1998)
History of General Relativity
, pp. 87-125
-
-
Renn, J.1
Sauer, T.2
-
5
-
-
34250590049
-
Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires
-
Fourès-Bruhat Y 1952 Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires Acta Math. 88 141-225
-
(1952)
Acta Math.
, vol.88
, Issue.1
, pp. 141-225
-
-
Fourès-Bruhat, Y.1
-
7
-
-
0003054750
-
The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system
-
Fischer A E and Marsden J E 1972 The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system Commun. Math. Phys. 28 1-38
-
(1972)
Commun. Math. Phys.
, vol.28
, Issue.1
, pp. 1-38
-
-
Fischer, A.E.1
Marsden, J.E.2
-
8
-
-
85038288691
-
Harmonic coordinate method for simulating generic singularities
-
Garfinkle D 2002 Harmonic coordinate method for simulating generic singularities Phys. Rev. D 65 044029
-
(2002)
Phys. Rev.
, vol.65
, Issue.4
, pp. 044029
-
-
Garfinkle, D.1
-
9
-
-
84859697031
-
Boundary conditions in linearized harmonic gravity
-
Szilgyi B, Schmidt B and Winicour J 2002 Boundary conditions in linearized harmonic gravity Phys. Rev. D 65 064015
-
(2002)
Phys. Rev.
, vol.65
, Issue.6
, pp. 064015
-
-
Szilgyi, B.1
Schmidt, B.2
Winicour, J.3
-
10
-
-
0141656473
-
Well-posed initial-boundary evolution in general relativity
-
Szilgyi B and Winicour J 2003 Well-posed initial-boundary evolution in general relativity Phys. Rev. D 68 041501
-
(2003)
Phys. Rev.
, vol.68
, Issue.4
, pp. 041501
-
-
Szilgyi, B.1
Winicour, J.2
-
11
-
-
33746607344
-
Testing numerical evolution with the shifted gauge wave
-
Babiuc M C, Szilgyi B and Winicour J 2006 Testing numerical evolution with the shifted gauge wave Class. Quantum Grav. 23 S321-43 (Preprint gr-qc/0511154)
-
(2006)
Class. Quantum Grav.
, vol.23
-
-
Babiuc, M.C.1
Szilgyi, B.2
Winicour, J.3
-
12
-
-
0001530475
-
On the hyperbolicity of Einstein's and other gauge field equations
-
Friedrich H 1985 On the hyperbolicity of Einstein's and other gauge field equations Commun. Math. Phys. 100 525-43
-
(1985)
Commun. Math. Phys.
, vol.100
, Issue.4
, pp. 525-543
-
-
Friedrich, H.1
-
13
-
-
12944260516
-
Numerical relativity using a generalized harmonic decomposition
-
Pretorius F 2005 Numerical relativity using a generalized harmonic decomposition Class. Quantum Grav. 22 425-52
-
(2005)
Class. Quantum Grav.
, vol.22
, Issue.2
, pp. 425-452
-
-
Pretorius, F.1
-
14
-
-
27144549879
-
Evolution of binary black hole spacetimes
-
Pretorius F 2005 Evolution of binary black hole spacetimes Phys. Rev. Lett. 95 121101
-
(2005)
Phys. Rev. Lett.
, vol.95
, Issue.12
, pp. 121101
-
-
Pretorius, F.1
-
16
-
-
33750309070
-
General-covariant evolution formalism for numerical relativity
-
Bona C, Ledvinka T, Palenzuela C and ek M 2003 General-covariant evolution formalism for numerical relativity Phys. Rev. D 67 104005
-
(2003)
Phys. Rev.
, vol.67
, Issue.10
, pp. 104005
-
-
Bona, C.1
Ledvinka, T.2
Palenzuela, C.3
Ek, M.4
-
17
-
-
22544437597
-
On the nonlinearity of the subsidiary systems
-
Friedrich H 2005 On the nonlinearity of the subsidiary systems Class. Quantum Grav. 22 L77
-
(2005)
Class. Quantum Grav.
, vol.22
, Issue.14
, pp. 77
-
-
Friedrich, H.1
-
18
-
-
84967712846
-
Symmetric positive systems with boundary characteristics of constant multiplicity
-
Rauch J 1985 Symmetric positive systems with boundary characteristics of constant multiplicity Trans. Am. Math. Soc. 291 167-87
-
(1985)
Trans. Am. Math. Soc.
, vol.291
, Issue.1
, pp. 167-187
-
-
Rauch, J.1
-
19
-
-
0009445873
-
The initial boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity
-
Secchi P 1996 The initial boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity Diff. Integral Eqns 9 671-700
-
(1996)
Diff. Integral Eqns
, vol.9
, pp. 671-700
-
-
Secchi, P.1
-
20
-
-
0030489957
-
Well-posedness of characteristic symmetric hyperbolic systems
-
Secchi P 1996 Well-posedness of characteristic symmetric hyperbolic systems Arch. Rat. Mech. Anal. 134 155-97
-
(1996)
Arch. Rat. Mech. Anal.
, vol.134
, Issue.2
, pp. 155-197
-
-
Secchi, P.1
-
21
-
-
0002990049
-
Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations
-
Liu T P 1979 Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations J. Diff. Eqns 33 92-111
-
(1979)
J. Diff. Eqns
, vol.33
, Issue.1
, pp. 92-111
-
-
Liu, T.P.1
-
22
-
-
42749100455
-
3D simulations of linearized scalar fields in Kerr spacetime
-
Scheel M A, Erickcek A L, Burko L M, Kidder L E, Pfeiffer H P and Teukolsky S A 2004 3d simulations of linearized scalar fields in Kerr spacetime Phys. Rev. D 69 104006
-
(2004)
Phys. Rev.
, vol.69
, Issue.10
, pp. 104006
-
-
Scheel, M.A.1
Erickcek, A.L.2
Burko, L.M.3
Kidder, L.E.4
Pfeiffer, H.P.5
Teukolsky, S.A.6
-
23
-
-
19744382070
-
Optimal constraint projection for hyperbolic evolution systems
-
Holst M, Lindblom L, Owen R, Pfeiffer H P, Scheel M A and Kidder L E 2004 Optimal constraint projection for hyperbolic evolution systems Phys. Rev. D 70 084017
-
(2004)
Phys. Rev.
, vol.70
, pp. 084017
-
-
Holst, M.1
Lindblom, L.2
Owen, R.3
Pfeiffer, H.P.4
Scheel, M.A.5
Kidder, L.E.6
-
24
-
-
0036407169
-
First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields
-
Alvi K 2002 First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields Class. Quantum Grav. 19 5153-62
-
(2002)
Class. Quantum Grav.
, vol.19
, Issue.20
, pp. 5153-5162
-
-
Alvi, K.1
-
25
-
-
0041173547
-
The Cauchy problem and the initial boundary value problem in numerical relativity
-
Stewart J M 1998 The Cauchy problem and the initial boundary value problem in numerical relativity Class. Quantum Grav. 15 2865-89
-
(1998)
Class. Quantum Grav.
, vol.15
, Issue.9
, pp. 2865-2889
-
-
Stewart, J.M.1
-
26
-
-
85038308182
-
Constraint-preserving boundary conditions in numerical relativity
-
Calabrese G, Lehner L and Tiglio M 2002 Constraint-preserving boundary conditions in numerical relativity Phys. Rev. D 65 104031
-
(2002)
Phys. Rev.
, vol.65
, Issue.10
, pp. 104031
-
-
Calabrese, G.1
Lehner, L.2
Tiglio, M.3
-
27
-
-
0242556830
-
Well posed constraint-preserving boundary conditions for the linearized Einstein equations
-
Calabrese G, Pullin J, Sarbach O, Tiglio M and Reula O 2003 Well posed constraint-preserving boundary conditions for the linearized Einstein equations Commun. Math. Phys. 240 377-95
-
(2003)
Commun. Math. Phys.
, vol.240
, Issue.1-2
, pp. 377-395
-
-
Calabrese, G.1
Pullin, J.2
Sarbach, O.3
Tiglio, M.4
Reula, O.5
-
28
-
-
18544371967
-
Boundary conditions for the Einstein evolution system
-
Kidder L E, Lindblom L, Scheel M A, Buchman L T and Pfeiffer H P 2005 Boundary conditions for the Einstein evolution system Phys. Rev. D 71 064020
-
(2005)
Phys. Rev.
, vol.71
, pp. 064020
-
-
Kidder, L.E.1
Lindblom, L.2
Scheel, M.A.3
Buchman, L.T.4
Pfeiffer, H.P.5
-
29
-
-
33746291149
-
Boundary conditions for Einstein's field equations: Analytical and numerical analysis
-
Sarbach O and Tiglio M 2005 Boundary conditions for Einstein's field equations: analytical and numerical analysis J. Hyperbolic Diff. Eqns 2 839-83
-
(2005)
J. Hyperbolic Diff. Eqns
, vol.2
, Issue.4
, pp. 839-883
-
-
Sarbach, O.1
Tiglio, M.2
-
31
-
-
0000574079
-
The quasi-normal modes of the Schwarzschild black hole
-
Chandrasekhar S and Detweiler S 1975 The quasi-normal modes of the Schwarzschild black hole Proc. R. Soc. Lond. A 344 441-52
-
(1975)
Proc. R. Soc. Lond.
, vol.344
, Issue.1639
, pp. 441-452
-
-
Chandrasekhar, S.1
Detweiler, S.2
|