-
1
-
-
35949018560
-
Statistical mechanics of cellular automata
-
Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55 (1983) 601-644
-
(1983)
Reviews of Modern Physics
, vol.55
, pp. 601-644
-
-
Wolfram, S.1
-
2
-
-
8744267587
-
Universality in elementary cellular automata
-
Cook, M.: Universality in elementary cellular automata. Complex Systems 15 (2004) 1-40
-
(2004)
Complex Systems
, vol.15
, pp. 1-40
-
-
Cook, M.1
-
3
-
-
0010717002
-
Universality of tag systems with P = 2
-
Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the ACM 11 (1964) 15-20
-
(1964)
Journal of the ACM
, vol.11
, pp. 15-20
-
-
Cocke, J.1
Minsky, M.2
-
4
-
-
0030286377
-
Small universal Turing machines
-
Rogozhin, Y.: Small universal Turing machines. TCS 168 (1996) 215-240
-
(1996)
TCS
, vol.168
, pp. 215-240
-
-
Rogozhin, Y.1
-
5
-
-
84898893412
-
Three small universal Turing machines
-
Margenstern, M., Rogozhin, Y., eds.: Machines, Computations, and Universality, Chişinǎu, Moldova, MCU, Springer
-
Baiocchi, C.: Three small universal Turing machines. In Margenstern, M., Rogozhin, Y., eds.: Machines, Computations, and Universality, Volume 2055 of LNCS., Chişinǎu, Moldova, MCU, Springer (2001) 1-10
-
(2001)
LNCS
, vol.2055
, pp. 1-10
-
-
Baiocchi, C.1
-
6
-
-
84876907785
-
A universal Turing machine with 3 states and 9 symbols
-
Knich, W., Rozenberg, G., Salomaa, A., eds.: Developments in Language Theory (DLT) 2001 Vienna, Springer
-
Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols. In Knich, W., Rozenberg, G., Salomaa, A., eds.: Developments in Language Theory (DLT) 2001. Volume 2295 of LNCS., Vienna, Springer (2002) 311-318
-
(2002)
LNCS
, vol.2295
, pp. 311-318
-
-
Kudlek, M.1
Rogozhin, Y.2
-
7
-
-
0040534095
-
Size and structure of universal Turing machines using tag systems
-
AMS
-
Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory, Symp. in Pure Math. Volume 5., AMS (1962) 229-238
-
(1962)
Recursive Function Theory, Symp. in Pure Math
, vol.5
, pp. 229-238
-
-
Minsky, M.1
-
8
-
-
33746332612
-
A small fast universal Turing machine
-
Dept. of Computer Science, NUI Maynooth
-
Neary, T., Woods, D.: A small fast universal Turing machine. Technical Report NUIM-CS-TR-2005-12, Dept. of Computer Science, NUI Maynooth (2005)
-
(2005)
Technical Report
, vol.NUIM-CS-TR-2005-12
-
-
Neary, T.1
Woods, D.2
-
10
-
-
0003557427
-
-
Oxford university Press, Oxford
-
Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation; P-completeness theory. Oxford university Press, Oxford (1995)
-
(1995)
Limits to Parallel Computation; P-completeness Theory
-
-
Greenlaw, R.1
Hoover, H.J.2
Ruzzo, W.L.3
-
11
-
-
0001223260
-
Universal computation in simple one-dimensional cellular automata
-
Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional cellular automata. Complex Systems 4 (1990) 299-318
-
(1990)
Complex Systems
, vol.4
, pp. 299-318
-
-
Lindgren, K.1
Nordahl, M.G.2
-
12
-
-
84869156668
-
The quest for small universal cellular automata
-
Widmayer, P., et al., eds.: International Colloquium on Automata, Languages and Programming (ICALP). Malaga, Spain, Springer
-
Ollinger, N.: The quest for small universal cellular automata. In Widmayer, P., et al., eds.: International Colloquium on Automata, Languages and Programming (ICALP). Volume 2380 of LNCS., Malaga, Spain, Springer (2002) 318-329
-
(2002)
LNCS
, vol.2380
, pp. 318-329
-
-
Ollinger, N.1
-
13
-
-
0031205949
-
Majority-vote cellular automata, Ising dynamics and P-completeness
-
Moore, C.: Majority-vote cellular automata, Ising dynamics and P-completeness. Journal of Statistical Physics 88 (1997) 795-805
-
(1997)
Journal of Statistical Physics
, vol.88
, pp. 795-805
-
-
Moore, C.1
-
14
-
-
0031123111
-
Quasi-linear cellular automata
-
Moore, C.: Quasi-linear cellular automata. Physica D 103 (1997) 100-132
-
(1997)
Physica D
, vol.103
, pp. 100-132
-
-
Moore, C.1
-
15
-
-
0002809415
-
Predicting non-linear cellular automata quickly by decomposing them into linear ones
-
Moore, C.: Predicting non-linear cellular automata quickly by decomposing them into linear ones. Physica D 111 (1998) 27-41
-
(1998)
Physica D
, vol.111
, pp. 27-41
-
-
Moore, C.1
|