메뉴 건너뛰기




Volumn 34, Issue 3, 2006, Pages 870-878

On the transience of processes defined on Galton-Watson trees

Author keywords

Branching processes; Random walk on trees; Reinforced random walk

Indexed keywords


EID: 33746227576     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/009117905000000837     Document Type: Article
Times cited : (36)

References (25)
  • 2
    • 33745458494 scopus 로고    scopus 로고
    • Limit theorems for reinforced random walks on certain trees
    • To appear
    • COLLEVECCHIO, A. (2006). Limit theorems for reinforced random walks on certain trees. Probab. Theory Related Fields, To appear.
    • (2006) Probab. Theory Related Fields
    • Collevecchio, A.1
  • 4
    • 20444463537 scopus 로고    scopus 로고
    • A once edge-reinforced random walk on a Galton-Watson tree is transient
    • MR2159246
    • DAI, J. J. (2005). A once edge-reinforced random walk on a Galton-Watson tree is transient. Statist. Probab. Lett. 73 115-124. MR2159246
    • (2005) Statist. Probab. Lett. , vol.73 , pp. 115-124
    • Dai, J.J.1
  • 5
    • 0000560875 scopus 로고
    • Reinforced random walk
    • MR1030727
    • DAVIS, B. (1990). Reinforced random walk. Probab. Theory Related Fields 84 203-229. MR1030727
    • (1990) Probab. Theory Related Fields , vol.84 , pp. 203-229
    • Davis, B.1
  • 6
    • 0013308128 scopus 로고    scopus 로고
    • Reinforced and perturbed random walks
    • (P. Révész and B. Tóth, eds.). Bolyai Soc. Math. Studies, Budapest. MR1752892
    • DAVIS, B. (1999). Reinforced and perturbed random walks. In Random Walks (P. Révész and B. Tóth, eds.) 9 113-126. Bolyai Soc. Math. Studies, Budapest. MR1752892
    • (1999) Random Walks , vol.9 , pp. 113-126
    • Davis, B.1
  • 7
    • 0036628231 scopus 로고    scopus 로고
    • Continuous time vertex-reinforced jump processes
    • MR1900324
    • DAVIS, B. and VOLKOV, S. (2002). Continuous time vertex-reinforced jump processes. Probab. Theory Related Fields 84 281-300. MR1900324
    • (2002) Probab. Theory Related Fields , vol.84 , pp. 281-300
    • Davis, B.1    Volkov, S.2
  • 8
    • 0742271399 scopus 로고    scopus 로고
    • Vertex-reinforced jump process on trees and finite graphs
    • MR2027294
    • DAVIS, B. and VOLKOV, S. (2004). Vertex-reinforced jump process on trees and finite graphs. Probab. Theory Related Fields 128 42-62. MR2027294
    • (2004) Probab. Theory Related Fields , vol.128 , pp. 42-62
    • Davis, B.1    Volkov, S.2
  • 9
    • 33746180663 scopus 로고    scopus 로고
    • Bayesian analysis for reversible Markov chains
    • To appear
    • DIACONIS, P. and ROLLES, S. W. W. (2006). Bayesian analysis for reversible Markov chains. Ann. Statist. 34. To appear.
    • (2006) Ann. Statist. , vol.34
    • Diaconis, P.1    Rolles, S.W.W.2
  • 11
    • 0000902270 scopus 로고
    • Random walks and percolation on trees
    • MR1062053
    • LYONS, R. (1990). Random walks and percolation on trees. Ann. Probab. 18 931-958. MR1062053
    • (1990) Ann. Probab. , vol.18 , pp. 931-958
    • Lyons, R.1
  • 12
    • 0000600594 scopus 로고
    • Random walk in a random environment and first-passage percolation on trees
    • MR1143414
    • LYONS, R. and PEMANTLE, R. (1992). Random walk in a random environment and first-passage percolation on trees. Ann. Probab. 20 125-136. MR1143414
    • (1992) Ann. Probab. , vol.20 , pp. 125-136
    • Lyons, R.1    Pemantle, R.2
  • 13
    • 0001551964 scopus 로고    scopus 로고
    • Biased random walks on Galton-Watson trees
    • MR1410689
    • LYONS, R., PEMANTLE, R. and PERES, Y. (1996). Biased random walks on Galton-Watson trees. Probab. Theory Related Fields 106 249-264. MR1410689
    • (1996) Probab. Theory Related Fields , vol.106 , pp. 249-264
    • Lyons, R.1    Pemantle, R.2    Peres, Y.3
  • 15
    • 0031207030 scopus 로고    scopus 로고
    • Aggregation, blowup, and collapse: The ABCs of taxis and reinforced random walk
    • MR1462051
    • OTHMER, H. and STEVENS, A. (1997). Aggregation, blowup, and collapse: The ABCs of taxis and reinforced random walk. SIAM J. Appl. Math. 57 1044-1081. MR1462051
    • (1997) SIAM J. Appl. Math. , vol.57 , pp. 1044-1081
    • Othmer, H.1    Stevens, A.2
  • 16
    • 0000925076 scopus 로고
    • Phase transition in reinforced random walks and rwre on trees
    • MR0942765
    • PEMANTLE, R. (1988). Phase transition in reinforced random walks and rwre on trees. Ann. Probab. 16 1229-1241. MR0942765
    • (1988) Ann. Probab. , vol.16 , pp. 1229-1241
    • Pemantle, R.1
  • 18
    • 0001404939 scopus 로고
    • Vertex-reinforced random walk
    • MR1156453
    • PEMANTLE, R. (1992). Vertex-reinforced random walk. Probab. Theory Related Fields 92 117-136. MR1156453
    • (1992) Probab. Theory Related Fields , vol.92 , pp. 117-136
    • Pemantle, R.1
  • 19
    • 0013199255 scopus 로고    scopus 로고
    • On which graphs are all random walks in random environments transient?
    • (R. Pemantle and Y. Peres, eds.). Springer, New York. MR1395617
    • PEMANTLE, R. and PERES, Y. (1996). On which graphs are all random walks in random environments transient? In Random Discrete Structures (R. Pemantle and Y. Peres, eds.) 207-211. Springer, New York. MR1395617
    • (1996) Random Discrete Structures , pp. 207-211
    • Pemantle, R.1    Peres, Y.2
  • 20
    • 0035470868 scopus 로고    scopus 로고
    • The branching random walk and contact process on Galton-Watson and nonhomogeneous trees
    • MR1880232
    • PEMANTLE, R. and STACEY, A. M. (2001). The branching random walk and contact process on Galton-Watson and nonhomogeneous trees. Ann. Probab. 29 1563-1590. MR1880232
    • (2001) Ann. Probab. , vol.29 , pp. 1563-1590
    • Pemantle, R.1    Stacey, A.M.2
  • 21
    • 0033164053 scopus 로고    scopus 로고
    • Vertex-reinforced random walks on ℤ have finite range
    • MR1733153
    • PEMANTLE, R. and VOLKOV, S. (1999). Vertex-reinforced random walks on ℤ have finite range. Ann. Probab. 27 1368-1388. MR1733153
    • (1999) Ann. Probab. , vol.27 , pp. 1368-1388
    • Pemantle, R.1    Volkov, S.2
  • 22
    • 0037633746 scopus 로고    scopus 로고
    • How edge-reinforced random walk arises naturally
    • MR1990056
    • ROLLES, S. W. W. (2003). How edge-reinforced random walk arises naturally. Probab. Theory Related Fields 126 243-260. MR1990056
    • (2003) Probab. Theory Related Fields , vol.126 , pp. 243-260
    • Rolles, S.W.W.1
  • 23
    • 33645151469 scopus 로고    scopus 로고
    • On the recurrence of edge-reinforced random walks on ℤ × G
    • To appear
    • ROLLES, S. W. W. (2006). On the recurrence of edge-reinforced random walks on ℤ × G. Probab. Theory Related Fields. To appear.
    • (2006) Probab. Theory Related Fields
    • Rolles, S.W.W.1
  • 24
    • 0003478962 scopus 로고
    • Reinforced random walk on the d-dimensional integer lattice
    • Dept. Statistics, Purdue Univ.
    • SELLKE, T. (1994). Reinforced random walk on the d-dimensional integer lattice. Technical Report 94-26, Dept. Statistics, Purdue Univ.
    • (1994) Technical Report , vol.94 , Issue.26
    • Sellke, T.1
  • 25
    • 0035533093 scopus 로고    scopus 로고
    • Vertex-reinforced random walk on arbitrary graphs
    • MR1825142
    • VOLKOV, S. (2001). Vertex-reinforced random walk on arbitrary graphs. Ann. Probab. 29 66-91. MR1825142
    • (2001) Ann. Probab. , vol.29 , pp. 66-91
    • Volkov, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.