메뉴 건너뛰기




Volumn 27, Issue 3, 2005, Pages 675-688

Best approximate solution of matrix equation AXB + CYD = E

Author keywords

Best approximate solution; Canonical correlation decomposition; Generalized singular value decomposition; Least squares solution; Matrix equation

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; LEAST SQUARES APPROXIMATIONS; LINEAR EQUATIONS; PROBLEM SOLVING; THEOREM PROVING;

EID: 33746145952     PISSN: 08954798     EISSN: 10957162     Source Type: Journal    
DOI: 10.1137/040615791     Document Type: Article
Times cited : (120)

References (30)
  • 1
    • 0012031067 scopus 로고
    • The matrix equation AXB+CYD = E
    • J. K. BAKSALAKY AND R. KALA, The matrix equation AXB+CYD = E, Linear Algebra Appl., 30 (1980), pp. 141-147.
    • (1980) Linear Algebra Appl. , vol.30 , pp. 141-147
    • Baksalaky, J.K.1    Kala, R.2
  • 2
    • 0018030821 scopus 로고
    • Optimisation procedures to correct stiffness and flexibility matrices using vibration data
    • M. BARUCH, Optimisation procedures to correct stiffness and flexibility matrices using vibration data, AIAA J., 16 (1978), pp. 1208-1210.
    • (1978) AIAA J. , vol.16 , pp. 1208-1210
    • Baruch, M.1
  • 3
    • 0017957823 scopus 로고
    • Optimal weighted orthogonalization of measured modes
    • M. BARUOH AND I. Y. BAR-ITZACK, Optimal weighted orthogonalization of measured modes, AIAA J., 16 (1978), pp. 346-351.
    • (1978) AIAA J. , vol.16 , pp. 346-351
    • Baruoh, M.1    Bar-Itzack, I.Y.2
  • 4
    • 0042317794 scopus 로고
    • Singular value and generalized singular value decomposition and the solution of linear matrix equations
    • K. E. CHU, Singular value and generalized singular value decomposition and the solution of linear matrix equations, Linear Algebra Appl., 88/89 (1987), pp. 83-98.
    • (1987) Linear Algebra Appl. , vol.88-89 , pp. 83-98
    • Chu, K.E.1
  • 5
    • 0036235766 scopus 로고    scopus 로고
    • Finite element model updating, eigenstructure assignment, and eigenvalue embedding techniques for vibrating systems
    • B. N. DATTA, finite element model updating, eigenstructure assignment, and eigenvalue embedding techniques for vibrating systems, Mech. Syst. Signal Process., 16 (2002), pp. 83-96.
    • (2002) Mech. Syst. Signal Process. , vol.16 , pp. 83-96
    • Datta, B.N.1
  • 6
    • 0038799829 scopus 로고    scopus 로고
    • Direct updating of damping and stiffness matrices
    • M. I. FRISWELL, D. J. INMAN, AND D. F. PILKEY, Direct updating of damping and stiffness matrices, AIAA J., 36 (1998), pp. 491-193.
    • (1998) AIAA J. , vol.36 , pp. 491-1193
    • Friswell, M.I.1    Inman, D.J.2    Pilkey, D.F.3
  • 9
    • 21844495742 scopus 로고
    • Perturbation analysis of the canonical correlations of matrix pairs
    • G. H. GOLUB AND H. ZHA, Perturbation analysis of the canonical correlations of matrix pairs, Linear Algebra Appl., 210 (1994), pp. 3-28.
    • (1994) Linear Algebra Appl. , vol.210 , pp. 3-28
    • Golub, G.H.1    Zha, H.2
  • 10
    • 0000379660 scopus 로고
    • Computing a nearest symmetric positive semidefinte matrix
    • N. J. HIGHAM, Computing a nearest symmetric positive semidefinte matrix, Linear Algebra Appl., 103 (1988), pp. 103-118.
    • (1988) Linear Algebra Appl. , vol.103 , pp. 103-118
    • Higham, N.J.1
  • 12
    • 0040170895 scopus 로고    scopus 로고
    • The matrix equation AXB + CYD = E over a simple Artinian ring
    • L.-P. HUANG AND Q.-G. ZENO, The matrix equation AXB + CYD = E over a simple Artinian ring, Linear and Multilinear Algebra, 38 (1996), pp. 226-232.
    • (1996) Linear and Multilinear Algebra , vol.38 , pp. 226-232
    • Huang, L.-P.1    Zeno, Q.-G.2
  • 14
    • 0002310418 scopus 로고
    • On optimal approximation of a matrix under spectral restriction
    • In Chinese
    • Z.-X. JIANG AND Q.-S. LU, On optimal approximation of a matrix under spectral restriction, Math. Numer. Sinica, 8 (1986), pp. 47-62 (In Chinese).
    • (1986) Math. Numer. Sinica , vol.8 , pp. 47-62
    • Jiang, Z.-X.1    Lu, Q.-S.2
  • 15
    • 0346044230 scopus 로고    scopus 로고
    • The constrained solutions of two matrix equations
    • A.-P. LIAO AND Z.-Z. BAI, The constrained solutions of two matrix equations, Acta Math. Sinica (Engl. Ser.), 18 (2002), pp. 671-678.
    • (2002) Acta Math. Sinica (Engl. Ser.) , vol.18 , pp. 671-678
    • Liao, A.-P.1    Bai, Z.-Z.2
  • 16
    • 33746165759 scopus 로고    scopus 로고
    • Least-squares solutions of the matrix equation A*XA = D in bisymmetric matrix sci
    • in Chinese
    • A.-P. LIAO AND Z.-Z. BAI, Least-squares solutions of the matrix equation A*XA = D in bisymmetric matrix sci, Math. Numer. Sinica, 24 (2002), pp. 9-20 (in Chinese).
    • (2002) Math. Numer. Sinica , vol.24 , pp. 9-20
    • Liao, A.-P.1    Bai, Z.-Z.2
  • 17
    • 33746129007 scopus 로고    scopus 로고
    • Least-squares solution of AXB = D over Symmetric positive semidefinite matrices X
    • A.-P. LIAO AND Z.-Z. BAI, Least-squares solution of AXB = D over Symmetric positive semidefinite matrices X, J. Comput. Math., 21 (2003), pp. 176-182.
    • (2003) J. Comput. Math. , vol.21 , pp. 176-182
    • Liao, A.-P.1    Bai, Z.-Z.2
  • 18
  • 19
    • 0001129014 scopus 로고
    • Towards a generalized singular value decomposition
    • C. C. PAIGB AND M. A. SAUNDERS, Towards a generalized singular value decomposition, SIAM J. Numer. Anal., 18 (1981), pp. 398-406.
    • (1981) SIAM J. Numer. Anal. , vol.18 , pp. 398-406
    • Paigb, C.C.1    Saunders, M.A.2
  • 20
    • 84976011518 scopus 로고
    • On best approximate solutions of linear matrix equations
    • R. PENROSE, On best approximate solutions of linear matrix equations, Proc. Cambridge Philos. Soc., 62 (1966), pp. 17-19.
    • (1966) Proc. Cambridge Philos. Soc. , vol.62 , pp. 17-19
    • Penrose, R.1
  • 21
    • 84968484501 scopus 로고
    • The equations AX - YB - C and AX - XB = C in matrices
    • W. E. ROTH, The equations AX - YB - C and AX - XB = C in matrices, Proc. Amer. Math. Soc., 3 (1962), pp. 392-396.
    • (1962) Proc. Amer. Math. Soc. , vol.3 , pp. 392-396
    • Roth, W.E.1
  • 22
    • 34250230826 scopus 로고
    • Computing the CS-decomposition of a partitioned orthogonal matrix
    • G. W. STEWART, Computing the CS-decomposition of a partitioned orthogonal matrix, Numer. Math, 40 (1982), pp. 297-306.
    • (1982) Numer. Math , vol.40 , pp. 297-306
    • Stewart, G.W.1
  • 24
    • 0042915997 scopus 로고    scopus 로고
    • Least squares solution of matrix equation AXB* + CYD* = E
    • S.-Y. SHIM AND Y. CHEN, Least squares solution of matrix equation AXB* + CYD* = E, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 802-808.
    • (2003) SIAM J. Matrix Anal. Appl. , vol.24 , pp. 802-808
    • Shim, S.-Y.1    Chen, Y.2
  • 25
    • 0010749217 scopus 로고
    • The equation AXB + CYD = E over a principal ideal domain
    • A. B. ÖZOÜLER, The equation AXB + CYD = E over a principal ideal domain, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 681-691.
    • (1991) SIAM J. Matrix Anal. Appl. , vol.12 , pp. 681-691
    • Özoüler, A.B.1
  • 26
    • 27344455755 scopus 로고    scopus 로고
    • Beijing University of Aeronautics and Astronautici Press, Beijing, (In Chinese)
    • R.-S. WANG, Functional Analysis and Optimization Theory, Beijing University of Aeronautics and Astronautici Press, Beijing, 2003 (In Chinese).
    • (2003) Functional Analysis and Optimization Theory
    • Wang, R.-S.1
  • 27
    • 0041784062 scopus 로고    scopus 로고
    • On solutions of matrix equation AXB + CYD = F
    • G.-P. XU, M.-S. WBI, AND D.-S. ZHENG, On solutions of matrix equation AXB + CYD = F, Linear Algebra Appl., 279 (1998), pp. 93-109.
    • (1998) Linear Algebra Appl. , vol.279 , pp. 93-109
    • Xu, G.-P.1    Wbi, M.-S.2    Zheng, D.-S.3
  • 28
    • 27344451577 scopus 로고    scopus 로고
    • The minimum norm solutions of two classes of matrix equations
    • In Chinese
    • Y.-X. YUAN, The minimum norm solutions of two classes of matrix equations, Numer. Math. J. Chinese Univ., 24 (2002), pp. 127-134 (In Chinese).
    • (2002) Numer. Math. J. Chinese Univ. , vol.24 , pp. 127-134
    • Yuan, Y.-X.1
  • 29
    • 27344436251 scopus 로고    scopus 로고
    • The optimal solution of linear matrix equation by using matrix decompositions
    • in Chinese
    • Y.-X. YUAN, The optimal solution of linear matrix equation by using matrix decompositions, Math. Numer. Sinica, 24 (2002), pp. 166-176 (in Chinese).
    • (2002) Math. Numer. Sinica , vol.24 , pp. 166-176
    • Yuan, Y.-X.1
  • 30
    • 0001838816 scopus 로고
    • Approximation on a closed convex cone and its numerical application
    • in Chinese
    • L. ZHANG, Approximation on a closed convex cone and its numerical application, Hunan Ann. Math., 6 (1986), pp. 16-22 (in Chinese).
    • (1986) Hunan Ann. Math. , vol.6 , pp. 16-22
    • Zhang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.