메뉴 건너뛰기




Volumn 1, Issue 1, 2006, Pages 26-30

Duration-distribution-based HMM for speech recognition

Author keywords

DDBHMM; Duration; Speech recognition

Indexed keywords


EID: 33746080038     PISSN: 16733460     EISSN: 16733584     Source Type: Journal    
DOI: 10.1007/s11460-005-0010-z     Document Type: Article
Times cited : (4)

References (19)
  • 1
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. R., A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 1989, 77(2): 257-286
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 2
    • 0020734214 scopus 로고
    • An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition
    • Levision S. E., Rabiner L. R. and Sondhi M. M., An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition, Bell Syst. Tech. J., 1983, 62(4): 1035-1074
    • (1983) Bell Syst. Tech. J. , vol.62 , Issue.4 , pp. 1035-1074
    • Levision, S.E.1    Rabiner, L.R.2    Sondhi, M.M.3
  • 3
    • 11744273521 scopus 로고
    • A study of duration of Chinese consonants
    • in Chinese
    • Qi S. and Zhang J., A study of duration of Chinese consonants, ACAT Acustica, 1982, 7(1): 8-13 (in Chinese)
    • (1982) ACAT Acustica , vol.7 , Issue.1 , pp. 8-13
    • Qi, S.1    Zhang, J.2
  • 4
    • 0028996966 scopus 로고
    • Robust parametric modeling of durations in hidden Markov models
    • Burshtein D., Robust parametric modeling of durations in hidden Markov models, IEEE Proc. ICASSP, 1995, 1: 548-551
    • (1995) IEEE Proc. ICASSP , vol.1 , pp. 548-551
    • Burshtein, D.1
  • 5
    • 0041353733 scopus 로고    scopus 로고
    • Improvement of noisy speech recognition using a proportional alignment decoding algorithm in the training phase
    • Hung W.-W. and Wang H.-C., Improvement of noisy speech recognition using a proportional alignment decoding algorithm in the training phase, Comput. Speech Lang., 1998, 12(3): 165-192
    • (1998) Comput. Speech Lang. , vol.12 , Issue.3 , pp. 165-192
    • Hung, W.-W.1    Wang, H.-C.2
  • 7
    • 0022685753 scopus 로고
    • Continuously variable duration hidden Markov models for automatic speech recognition
    • Levinson S. E., Continuously variable duration hidden Markov models for automatic speech recognition, Comput, Speech Lang., 1986, 1: 29-45
    • (1986) Comput, Speech Lang. , vol.1 , pp. 29-45
    • Levinson, S.E.1
  • 8
    • 0022234383 scopus 로고
    • Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition
    • Russell M. J. and Moore R. K., Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition, IEEE Proc. ICASSP, 1985, 5-8
    • (1985) IEEE Proc. ICASSP , pp. 5-8
    • Russell, M.J.1    Moore, R.K.2
  • 9
    • 84967029162 scopus 로고
    • Use of semi-Markov models for speaker-independent phoneme recognition
    • Ratnayake N., Savic M. and Sorensen J., Use of semi-Markov Models for speaker-independent phoneme recognition, IEEE ICASSP, 1992, 1: 565-568
    • (1992) IEEE ICASSP , vol.1 , pp. 565-568
    • Ratnayake, N.1    Savic, M.2    Sorensen, J.3
  • 10
    • 0023214109 scopus 로고
    • Experimental evaluation of duration modeling techniques for automatic speech recognition
    • Russel M. J. and Cook A. E., Experimental evaluation of duration modeling techniques for automatic speech recognition, IEEE Proc. ICASSP, 1987, 2376-2379
    • (1987) IEEE Proc. ICASSP , pp. 2376-2379
    • Russel, M.J.1    Cook, A.E.2
  • 11
    • 0026372943 scopus 로고
    • Hidden Markov modeling using the most likely state sequence
    • Neri M. and Yariv E., Hidden Markov modeling using the most likely state sequence, IEEE Proc. ICASSP, 1991, 469-472
    • (1991) IEEE Proc. ICASSP , pp. 469-472
    • Neri, M.1    Yariv, E.2
  • 12
    • 84978308497 scopus 로고
    • Modeling state durations in hidden Markov models for automatic speech recognition
    • Ramesh P. and Wilpon J. G., Modeling state durations in hidden Markov models for automatic speech recognition, IEEE Proc. ICASSP, 1992, 1: 381-384
    • (1992) IEEE Proc. ICASSP , vol.1 , pp. 381-384
    • Ramesh, P.1    Wilpon, J.G.2
  • 13
    • 0027239230 scopus 로고
    • Modeling duration in a hidden Markov model with the exponential family
    • Mitchell C. D. and Jamieson L. H., Modeling duration in a hidden Markov model with the exponential family, IEEE Proc. ICASSP, 1993, 2: 331-334
    • (1993) IEEE Proc. ICASSP , vol.2 , pp. 331-334
    • Mitchell, C.D.1    Jamieson, L.H.2
  • 16
    • 0026137431 scopus 로고
    • Hidden Markov models with duration-dependent state transition probabilities
    • Vaseghi S. V., Hidden Markov models with duration-dependent state transition probabilities, Electron. Lett., 1991, 27(8): 625-626
    • (1991) Electron. Lett. , vol.27 , Issue.8 , pp. 625-626
    • Vaseghi, S.V.1
  • 17
    • 0029184546 scopus 로고
    • State duration modeling in hidden Markov models
    • Vaseghi S. V., State duration modeling in hidden Markov models, Signal Process., 1995, 41: 31-41
    • (1995) Signal Process. , vol.41 , pp. 31-41
    • Vaseghi, S.V.1
  • 18
    • 0030245363 scopus 로고    scopus 로고
    • From HMM's to segment models: A unified view of stochastic modeling for speech recognition
    • Ostendorf M., Digalakis V. V. and Kimball O. A., From HMM's to segment models: a unified view of stochastic modeling for speech recognition, IEEE Trans. Speech Audio Process., 1996, 14(5): 360-378
    • (1996) IEEE Trans. Speech Audio Process. , vol.14 , Issue.5 , pp. 360-378
    • Ostendorf, M.1    Digalakis, V.V.2    Kimball, O.A.3
  • 19
    • 0031682788 scopus 로고    scopus 로고
    • An inhomogeneous HMM speech recognition algorithm
    • Wang Z. and Gao H., An inhomogeneous HMM speech recognition algorithm, Chin, J. Electron., 1998, 7(1): 73-77
    • (1998) Chin, J. Electron. , vol.7 , Issue.1 , pp. 73-77
    • Wang, Z.1    Gao, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.