-
1
-
-
0033458290
-
Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem
-
D. Aldous and P. Diaconis. Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem. Bull. AMS, 36(4):413-432, 1999.
-
(1999)
Bull. AMS
, vol.36
, Issue.4
, pp. 413-432
-
-
Aldous, D.1
Diaconis, P.2
-
2
-
-
84964528874
-
A survey of longest common subsequence algorithms
-
IEEE Computer Society
-
L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algorithms. In SPIRE '00, pages 39-48. IEEE Computer Society, 2000.
-
(2000)
SPIRE '00
, pp. 39-48
-
-
Bergroth, L.1
Hakonen, H.2
Raita, T.3
-
3
-
-
0034325359
-
Enumerating longest increasing subsequences and patience sorting
-
S. Bespamyatnikh and M. Segal. Enumerating longest increasing subsequences and patience sorting. Inf. Process. Lett., 76(1-2):7-11, 2000.
-
(2000)
Inf. Process. Lett.
, vol.76
, Issue.1-2
, pp. 7-11
-
-
Bespamyatnikh, S.1
Segal, M.2
-
4
-
-
84941159867
-
Efficient algorithms for finding a longest common increasing subsequence
-
W.-T. Chan, Y. Zhang, S. P.Y. Fung, D. Ye, and H. Zhu. Efficient Algorithms for Finding A Longest Common Increasing Subsequence. In ISAAC '05, 2005.
-
(2005)
ISAAC '05
-
-
Chan, W.-T.1
Zhang, Y.2
Fung, S.P.Y.3
Ye, D.4
Zhu, H.5
-
5
-
-
0003638065
-
Oil computing the length of longest increasing subsequences
-
M.L. Fredman. Oil computing the length of longest increasing subsequences. Discrete Mathematics, 11(1):29-35, 1975.
-
(1975)
Discrete Mathematics
, vol.11
, Issue.1
, pp. 29-35
-
-
Fredman, M.L.1
-
6
-
-
85020601782
-
Scaling and related techniques for geometry problems
-
ACM Press
-
H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems. In STOC '84, pages 135-143. ACM Press, 1984.
-
(1984)
STOC '84
, pp. 135-143
-
-
Gabow, H.N.1
Bentley, J.L.2
Tarjan, R.E.3
-
7
-
-
0016518550
-
A linear space algorithm for computing maximal common subsequences
-
D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Commun. ACM, 18(6):341-343, 1975.
-
(1975)
Commun. ACM
, vol.18
, Issue.6
, pp. 341-343
-
-
Hirschberg, D.S.1
-
8
-
-
0017492836
-
A fast algorithm for computing longest common subsequences
-
J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common subsequences. Commun. ACM, 20(5):350-353, 1977.
-
(1977)
Commun. ACM
, vol.20
, Issue.5
, pp. 350-353
-
-
Hunt, J.W.1
Szymanski, T.G.2
-
9
-
-
0018985316
-
A faster algorithm computing string edit distances
-
W.J. Masek and M.S. Paterson. A faster algorithm computing string edit distances. J. Comput. System Sci., 20:18-31, 1980.
-
(1980)
J. Comput. System Sci.
, vol.20
, pp. 18-31
-
-
Masek, W.J.1
Paterson, M.S.2
-
12
-
-
0015960104
-
The string-to-string correction problem
-
R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168-173, 1974.
-
(1974)
J. ACM
, vol.21
, Issue.1
, pp. 168-173
-
-
Wagner, R.A.1
Fischer, M.J.2
-
13
-
-
0020802573
-
Log-logarithmic worst-case range queries are possible in space Theta(N)
-
D. E. Willard. Log-logarithmic worst-case range queries are possible in space Theta(N). Inf. Process. Lett., 17(2):81-84, 1983.
-
(1983)
Inf. Process. Lett.
, vol.17
, Issue.2
, pp. 81-84
-
-
Willard, D.E.1
-
14
-
-
12244307876
-
A fast algorithm for computing a longest common increasing subsequence
-
I.-H. Yang, C.-P. Huang, and K.-M. Chao. A fast algorithm for computing a longest common increasing subsequence. Inf. Process. Lett, 93/5:249-253, 2005.
-
(2005)
Inf. Process. Lett
, vol.93
, Issue.5
, pp. 249-253
-
-
Yang, I.-H.1
Huang, C.-P.2
Chao, K.-M.3
|