메뉴 건너뛰기




Volumn 4009 LNCS, Issue , 2006, Pages 330-341

Faster algorithms for computing longest common increasing subsequences

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; COMPUTER SCIENCE; DATA STRUCTURES; PROBLEM SOLVING;

EID: 33746052085     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11780441_30     Document Type: Conference Paper
Times cited : (15)

References (14)
  • 1
    • 0033458290 scopus 로고    scopus 로고
    • Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem
    • D. Aldous and P. Diaconis. Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem. Bull. AMS, 36(4):413-432, 1999.
    • (1999) Bull. AMS , vol.36 , Issue.4 , pp. 413-432
    • Aldous, D.1    Diaconis, P.2
  • 2
    • 84964528874 scopus 로고    scopus 로고
    • A survey of longest common subsequence algorithms
    • IEEE Computer Society
    • L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algorithms. In SPIRE '00, pages 39-48. IEEE Computer Society, 2000.
    • (2000) SPIRE '00 , pp. 39-48
    • Bergroth, L.1    Hakonen, H.2    Raita, T.3
  • 3
    • 0034325359 scopus 로고    scopus 로고
    • Enumerating longest increasing subsequences and patience sorting
    • S. Bespamyatnikh and M. Segal. Enumerating longest increasing subsequences and patience sorting. Inf. Process. Lett., 76(1-2):7-11, 2000.
    • (2000) Inf. Process. Lett. , vol.76 , Issue.1-2 , pp. 7-11
    • Bespamyatnikh, S.1    Segal, M.2
  • 4
    • 84941159867 scopus 로고    scopus 로고
    • Efficient algorithms for finding a longest common increasing subsequence
    • W.-T. Chan, Y. Zhang, S. P.Y. Fung, D. Ye, and H. Zhu. Efficient Algorithms for Finding A Longest Common Increasing Subsequence. In ISAAC '05, 2005.
    • (2005) ISAAC '05
    • Chan, W.-T.1    Zhang, Y.2    Fung, S.P.Y.3    Ye, D.4    Zhu, H.5
  • 5
    • 0003638065 scopus 로고
    • Oil computing the length of longest increasing subsequences
    • M.L. Fredman. Oil computing the length of longest increasing subsequences. Discrete Mathematics, 11(1):29-35, 1975.
    • (1975) Discrete Mathematics , vol.11 , Issue.1 , pp. 29-35
    • Fredman, M.L.1
  • 6
    • 85020601782 scopus 로고
    • Scaling and related techniques for geometry problems
    • ACM Press
    • H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems. In STOC '84, pages 135-143. ACM Press, 1984.
    • (1984) STOC '84 , pp. 135-143
    • Gabow, H.N.1    Bentley, J.L.2    Tarjan, R.E.3
  • 7
    • 0016518550 scopus 로고
    • A linear space algorithm for computing maximal common subsequences
    • D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Commun. ACM, 18(6):341-343, 1975.
    • (1975) Commun. ACM , vol.18 , Issue.6 , pp. 341-343
    • Hirschberg, D.S.1
  • 8
    • 0017492836 scopus 로고
    • A fast algorithm for computing longest common subsequences
    • J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common subsequences. Commun. ACM, 20(5):350-353, 1977.
    • (1977) Commun. ACM , vol.20 , Issue.5 , pp. 350-353
    • Hunt, J.W.1    Szymanski, T.G.2
  • 9
    • 0018985316 scopus 로고
    • A faster algorithm computing string edit distances
    • W.J. Masek and M.S. Paterson. A faster algorithm computing string edit distances. J. Comput. System Sci., 20:18-31, 1980.
    • (1980) J. Comput. System Sci. , vol.20 , pp. 18-31
    • Masek, W.J.1    Paterson, M.S.2
  • 12
    • 0015960104 scopus 로고
    • The string-to-string correction problem
    • R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168-173, 1974.
    • (1974) J. ACM , vol.21 , Issue.1 , pp. 168-173
    • Wagner, R.A.1    Fischer, M.J.2
  • 13
    • 0020802573 scopus 로고
    • Log-logarithmic worst-case range queries are possible in space Theta(N)
    • D. E. Willard. Log-logarithmic worst-case range queries are possible in space Theta(N). Inf. Process. Lett., 17(2):81-84, 1983.
    • (1983) Inf. Process. Lett. , vol.17 , Issue.2 , pp. 81-84
    • Willard, D.E.1
  • 14
    • 12244307876 scopus 로고    scopus 로고
    • A fast algorithm for computing a longest common increasing subsequence
    • I.-H. Yang, C.-P. Huang, and K.-M. Chao. A fast algorithm for computing a longest common increasing subsequence. Inf. Process. Lett, 93/5:249-253, 2005.
    • (2005) Inf. Process. Lett , vol.93 , Issue.5 , pp. 249-253
    • Yang, I.-H.1    Huang, C.-P.2    Chao, K.-M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.