메뉴 건너뛰기




Volumn 4005 LNAI, Issue , 2006, Pages 392-407

A randomized online learning algorithm for better variance control

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; FUNCTIONS; ONLINE SYSTEMS; OPTIMIZATION; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 33746043351     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11776420_30     Document Type: Conference Paper
Times cited : (10)

References (24)
  • 2
    • 4944233194 scopus 로고    scopus 로고
    • Aggregated estimators and empirical complexity for least square regression
    • J.-Y. Audibert. Aggregated estimators and empirical complexity for least square regression. Ann. Inst. Henri Poincaré, Probab. Stat, 40(6):685-736, 2004.
    • (2004) Ann. Inst. Henri Poincaré, Probab. Stat , vol.40 , Issue.6 , pp. 685-736
    • Audibert, J.-Y.1
  • 3
    • 33746088634 scopus 로고    scopus 로고
    • Preprint n.905, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7
    • J.-Y. Audibert. A better variance control for PAC-Bayesian classification. Preprint n.905, http://www.proba.jussieu.fr/mathdoc/preprints/ index.html, 2004. Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7.
    • (2004) A Better Variance Control for PAC-Bayesian Classification
    • Audibert, J.-Y.1
  • 4
    • 33645704704 scopus 로고    scopus 로고
    • PhD thesis, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7
    • J.-Y. Audibert. PAC-Bayesian statistical learning theory. PhD thesis, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7, 2004.
    • (2004) PAC-Bayesian Statistical Learning Theory
    • Audibert, J.-Y.1
  • 5
    • 0002168687 scopus 로고
    • Are bayes rules consistent in information?
    • T.M. Cover and B. Gopinath, editors, Springer
    • A. Barron. Are bayes rules consistent in information? In T.M. Cover and B. Gopinath, editors, Open Problems in Communication and Computation, pages 85-91. Springer, 1987.
    • (1987) Open Problems in Communication and Computation , pp. 85-91
    • Barron, A.1
  • 6
    • 0033233737 scopus 로고    scopus 로고
    • Information-theoretic determination of minimax rates of convergence
    • A. Barron and Y. Yang. Information-theoretic determination of minimax rates of convergence. Ann. Stat., 27(5): 1564-1599, 1999.
    • (1999) Ann. Stat. , vol.27 , Issue.5 , pp. 1564-1599
    • Barron, A.1    Yang, Y.2
  • 7
    • 33746077372 scopus 로고    scopus 로고
    • Sequential procedures for aggregating arbitrary estimators of a conditional mean
    • F. Bunea and A. Nobel. Sequential procedures for aggregating arbitrary estimators of a conditional mean, 2005. Technical report, Available from http://stat.fsu.edu/%7Eflori/ps/bnapril2005IEEE.pdf.
    • (2005) Technical Report
    • Bunea, F.1    Nobel, A.2
  • 11
    • 33645980911 scopus 로고    scopus 로고
    • Preprint n.840, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7
    • O. Catoni. A PAC-Bayesian approach to adaptive classification. Preprint n.840, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7, 2003.
    • (2003) A PAC-Bayesian Approach to Adaptive Classification
    • Catoni, O.1
  • 13
    • 0033234631 scopus 로고    scopus 로고
    • On prediction of individual sequences
    • N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences, Ann. Stat., 27(6):1865-1895, 1999.
    • (1999) Ann. Stat. , vol.27 , Issue.6 , pp. 1865-1895
    • Cesa-Bianchi, N.1    Lugosi, G.2
  • 14
    • 0000421687 scopus 로고
    • Central limit theorems for empirical measures
    • R.M. Dudley. Central limit theorems for empirical measures. Ann. Probab., 6:899-929, 1978.
    • (1978) Ann. Probab. , vol.6 , pp. 899-929
    • Dudley, R.M.1
  • 15
    • 0032164946 scopus 로고    scopus 로고
    • Sequential prediction of individual sequences under general loss functions
    • D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of individual sequences under general loss functions. IEEE Trans. on Information Theory, 44(5): 1906-1925, 1998.
    • (1998) IEEE Trans. on Information Theory , vol.44 , Issue.5 , pp. 1906-1925
    • Haussler, D.1    Kivinen, J.2    Warmuth, M.K.3
  • 22
    • 0004599527 scopus 로고    scopus 로고
    • Combining different procedures for adaptive regression
    • Y. Yang. Combining different procedures for adaptive regression. Journal of multivariate analysis, 74:135-161, 2000.
    • (2000) Journal of Multivariate Analysis , vol.74 , pp. 135-161
    • Yang, Y.1
  • 24
    • 33645722194 scopus 로고    scopus 로고
    • Information theoretical upper and lower bounds for statistical estimation
    • to appear
    • T. Zhang. Information theoretical upper and lower bounds for statistical estimation. IEEE Transaction on Information Theory, 2006. to appear.
    • (2006) IEEE Transaction on Information Theory
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.