메뉴 건너뛰기




Volumn 44, Issue 4, 2005, Pages 1419-1435

Approximation of solutions of riccati equations

Author keywords

Exponential dichotomy; Matrix approximation; Riccati equation

Indexed keywords

APPROXIMATION THEORY; CONTROL SYSTEMS; INVARIANCE; MATHEMATICAL OPERATORS; OPTIMIZATION; PROBLEM SOLVING;

EID: 33746034965     PISSN: 03630129     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0363012903436843     Document Type: Article
Times cited : (9)

References (20)
  • 2
    • 0021497971 scopus 로고
    • The linear regulator problem for parabolic systems
    • H. T. BANKS AND K. KUNISCH, The linear regulator problem for parabolic systems, SIAM J. Control Optim., 22 (1984), pp. 684-698.
    • (1984) SIAM J. Control Optim. , vol.22 , pp. 684-698
    • Banks, H.T.1    Kunisch, K.2
  • 4
    • 38249039096 scopus 로고
    • Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators
    • H. BART, I. GOHBERG, AND M. A. KAASHOEK, Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators, J. Funct. Anal., 68 (1986), pp. 1-42.
    • (1986) J. Funct. Anal. , vol.68 , pp. 1-42
    • Bart, H.1    Gohberg, I.2    Kaashoek, M.A.3
  • 6
    • 0012090877 scopus 로고
    • Absolutely convergent Fourier expansions for non-commutative normed rings
    • S. BOCHNER AND R. S. PHILLIPS, Absolutely convergent Fourier expansions for non-commutative normed rings, Ann. of Math., 43 (1942), pp. 409-418.
    • (1942) Ann. of Math. , vol.43 , pp. 409-418
    • Bochner, S.1    Phillips, R.S.2
  • 8
    • 0020543480 scopus 로고
    • Linear-quadratic optimal control of hereditary differential systems: Infinite dimensional Riccati equations and numerical approximations
    • J. S. GIBSON, Linear-quadratic optimal control of hereditary differential systems: Infinite dimensional Riccati equations and numerical approximations, SIAM J. Control Optim., 21 (1983), pp. 95-139.
    • (1983) SIAM J. Control Optim. , vol.21 , pp. 95-139
    • Gibson, J.S.1
  • 9
    • 0001993015 scopus 로고
    • The factorization of operator functions with respect to a contour. II. the canonical factorization of operator functions close to the identity
    • (in Russian). Appendix.
    • I. C. GOHBERG AND J. LEITERER, The factorization of operator functions with respect to a contour. II. The canonical factorization of operator functions close to the identity, Math. Nach., 54 (1972), pp. 41-74 (in Russian). Appendix.
    • (1972) Math. Nach. , vol.54 , pp. 41-74
    • Gohberg, I.C.1    Leiterer, J.2
  • 11
    • 0003324723 scopus 로고
    • Introduction to functional differential equations
    • Springer, New York
    • J. K. HALE AND S. M. VERDUYN-LUNEL, Introduction to Functional Differential Equations, Applied Mathematical Sciences 99, Springer, New York, 1993.
    • (1993) Applied Mathematical Sciences , vol.99
    • Hale, J.K.1    Verduyn-Lunel, S.M.2
  • 12
    • 0008275105 scopus 로고
    • Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hubert spaces
    • F. Kappel, K. Kunisch, and W. Schappacher, eds., Springer, New York
    • K. ITO, Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hubert spaces, Distributed Parameter Systems, F. Kappel, K. Kunisch, and W. Schappacher, eds., Springer, New York, 1987, pp. 151-166.
    • (1987) Distributed Parameter Systems , pp. 151-166
    • Ito, K.1
  • 13
    • 0025522741 scopus 로고
    • Finite-dimensional compensators for infinite-dimensional systems via Galerkin-type approximation
    • K. ITO, Finite-dimensional compensators for infinite-dimensional systems via Galerkin-type approximation, SIAM J. Control Optim., 28 (1990), pp. 1251-1269.
    • (1990) SIAM J. Control Optim. , vol.28 , pp. 1251-1269
    • Ito, K.1
  • 16
    • 0029764940 scopus 로고    scopus 로고
    • Connections between the algebraic Riccati equation and the Hamiltonian for Riesz-spectral systems
    • C. R. KUIPER AND H. J. ZWART, Connections between the algebraic Riccati equation and the Hamiltonian for Riesz-spectral systems, J. Math. Systems, Estim. Control, 6 (1996), pp. 1-48.
    • (1996) J. Math. Systems, Estim. Control , vol.6 , pp. 1-48
    • Kuiper, C.R.1    Zwart, H.J.2
  • 18
    • 1942463406 scopus 로고    scopus 로고
    • Invariant subspaces of infinite dimensional Hamiltonians and solutions of the corresponding Riccati equations
    • Gohberg and H. Langer, eds., Birkhäuser, Basel and Boston
    • H. LANGER, A. C. M. RAN, AND B. A. VAN DE ROTTEN, Invariant subspaces of infinite dimensional Hamiltonians and solutions of the corresponding Riccati equations, Linear Operators and Matrices, Oper. Theory Adv. Appl., I. Gohberg and H. Langer, eds., Birkhäuser, Basel and Boston, 2002, pp. 235-254.
    • (2002) Linear Operators and Matrices, Oper. Theory Adv. Appl., I. , pp. 235-254
    • Langer, H.1    Ran, A.C.M.2    Van De Rotten, B.A.3
  • 19
    • 1942435476 scopus 로고    scopus 로고
    • Perturbation results for exponentially dichotomous operators on general Banach spaces
    • C. V. M. VAN DER MEE AND A. C. M. RAN, Perturbation results for exponentially dichotomous operators on general Banach spaces, J. Funct. Anal., 210 (2004), pp. 193-213.
    • (2004) J. Funct. Anal. , vol.210 , pp. 193-213
    • Van Der Mee, C.V.M.1    Ran, A.C.M.2
  • 20
    • 0034548451 scopus 로고    scopus 로고
    • An approximation theory for strongly stabilizing solutions to the operator LQ Riccati equation
    • J. C. OOSTVEEN, R. F. CURTAIN, AND K. ITO, An approximation theory for strongly stabilizing solutions to the operator LQ Riccati equation, SIAM J. Control Optim., 38 (2000), pp. 1909-1937.
    • (2000) SIAM J. Control Optim. , vol.38 , pp. 1909-1937
    • Oostveen, J.C.1    Curtain, R.F.2    Ito, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.