-
1
-
-
0026303073
-
An adaptive algorithm for the approximate calculation of multiple integrals
-
BERNTSEN, J., ESPELID, T. O., AND GENZ, A. An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Softw. 17 (1991), 437-451.
-
(1991)
ACM Trans. Math. Softw.
, vol.17
, pp. 437-451
-
-
Berntsen, J.1
Espelid, T.O.2
Genz, A.3
-
2
-
-
0031467140
-
An analytical approximation of the Bragg curve for therapeutic proton beams
-
BORTFELD, T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med. Phys. 24 (1997), 2024-2033.
-
(1997)
Med. Phys.
, vol.24
, pp. 2024-2033
-
-
Bortfeld, T.1
-
4
-
-
2342568931
-
Computation of loop integrals using extrapolation
-
DE DONCKER, E., SHIMIZU, Y., FUJIMOTO, J., AND YUASA, F. Computation of loop integrals using extrapolation. Computer Physics Communications 159 (2004), 145-156.
-
(2004)
Computer Physics Communications
, vol.159
, pp. 145-156
-
-
De Doncker, E.1
Shimizu, Y.2
Fujimoto, J.3
Yuasa, F.4
-
5
-
-
8344290460
-
Loop integration results using numerical extrapolation for a non-scalar integral
-
hep-ph/0405098
-
DE DONCKER, E., SHIMIZU, Y., FUJIMOTO, J., YUASA, F., CUCOS, L., AND VAN VOORST, J. Loop integration results using numerical extrapolation for a non-scalar integral. Nuclear Instruments and Methods in Physics Research Section A 539 (2004), 269-273. hep-ph/0405098.
-
(2004)
Nuclear Instruments and Methods in Physics Research Section A
, vol.539
, pp. 269-273
-
-
De Doncker, E.1
Shimizu, Y.2
Fujimoto, J.3
Yuasa, F.4
Cucos, L.5
Van Voorst, J.6
-
6
-
-
14644406160
-
A Fourier analysis of the dose grid resolution required for accuracte IMRT fluence map optimization
-
DEMPSEY, J. F., AND ET AL. A Fourier analysis of the dose grid resolution required for accuracte IMRT fluence map optimization. Med. Phys. 32 (2005), 380-388.
-
(2005)
Med. Phys.
, vol.32
, pp. 380-388
-
-
Dempsey, J.F.1
-
7
-
-
84976821043
-
An adaptive algorithm for numerical integration over an n-dimensional rectangular region
-
GENZ, A., AND MALIK, A. An adaptive algorithm for numerical integration over an n-dimensional rectangular region, Journal of Computational and Applied Mathematics 6 (1980), 295-302.
-
(1980)
Journal of Computational and Applied Mathematics
, vol.6
, pp. 295-302
-
-
Genz, A.1
Malik, A.2
-
8
-
-
0000074117
-
An imbedded family of multidimensional integration rules
-
GENZ, A., AND MALIK, A. An imbedded family of multidimensional integration rules, SIAM J. Numer. Anal. 20 (1983), 580-588.
-
(1983)
SIAM J. Numer. Anal.
, vol.20
, pp. 580-588
-
-
Genz, A.1
Malik, A.2
-
9
-
-
84941152238
-
A Fourier analysis on the optimal grid size for discrete proton beam dose calculation
-
Submitted to
-
Li, H. S., DEMPSEY, J. F., AND ROMEIJIN, H. E. A Fourier analysis on the optimal grid size for discrete proton beam dose calculation. Submitted to Medical Physics.
-
Medical Physics
-
-
Li, H.S.1
Dempsey, J.F.2
Romeijin, H.E.3
-
10
-
-
25144456975
-
On iterated numerical integration
-
Jan
-
LI, S., DE DONCKER, E., AND KAUGARS, K. On iterated numerical integration. In Lecture Notes in Computer Science (Jan 2005), vol. 3514, pp. 123-130.
-
(2005)
Lecture Notes in Computer Science
, vol.3514
, pp. 123-130
-
-
Li, S.1
De Doncker, E.2
Kaugars, K.3
-
11
-
-
0003790433
-
-
Springer Series in Computational Mathematics. Springer-Verlag
-
PIESSENS, R., DE DONCKER, E., ÜBERHUBER, C. W., AND KAHANER, D. K. QUADPACK, A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics. Springer-Verlag, 1983.
-
(1983)
QUADPACK, a Subroutine Package for Automatic Integration
-
-
Piessens, R.1
De Doncker, E.2
Überhuber, C.W.3
Kahaner, D.K.4
-
12
-
-
0034975820
-
Experimental determination and verification of the parameters used in a proton pencil beam algorithm
-
SZYMANOWSKI, H., AND MAZAL, A. E. A. Experimental determination and verification of the parameters used in a proton pencil beam algorithm. Med. Phys. 28 (2001), 975-987.
-
(2001)
Med. Phys.
, vol.28
, pp. 975-987
-
-
Szymanowski, H.1
Mazal, A.E.A.2
-
13
-
-
84941159162
-
-
PARINT. http://www.cs.wmich.edu/parint, PARINT web site.
-
-
-
|