-
1
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4 (1992) 1-58
-
(1992)
Neural Computation
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
2
-
-
0003016813
-
Applying Okham's razor in modeling cognition: A Bayesian approach
-
Myung, I. J., Pitt, M. A.: Applying Okham's razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review 4 (1996) 79-95
-
(1996)
Psychonomic Bulletin & Review
, vol.4
, pp. 79-95
-
-
Myung, I.J.1
Pitt, M.A.2
-
3
-
-
0003257214
-
Prediction risk and architecture selection for neural networks
-
Cherkassky, V., Friedman, J. H., Wechsler, H. (eds.). NATO ASI Series F, Springer-Verlag
-
Moody, J.: Prediction risk and architecture selection for neural networks. In: Cherkassky, V., Friedman, J. H., Wechsler, H. (eds.): From Statistics to Neural Networks: Theory and Pattern Recognition Applications. NATO ASI Series F, Springer-Verlag, 1994
-
(1994)
From Statistics to Neural Networks: Theory and Pattern Recognition Applications
-
-
Moody, J.1
-
4
-
-
84909719647
-
How far are automatically chosen regression smoothing parameters from their optimum?
-
Hardle, W., Hall, P., Marron, J. S.: How far are automatically chosen regression smoothing parameters from their optimum? Journal of the American Statistical Association 83 (1988) 86-95
-
(1988)
Journal of the American Statistical Association
, vol.83
, pp. 86-95
-
-
Hardle, W.1
Hall, P.2
Marron, J.S.3
-
6
-
-
0000120766
-
Estimating the dimension of a model
-
Shwartz, G.: Estimating the dimension of a model. Annals of Statistics 6 (1978) 461-464
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Shwartz, G.1
-
9
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
0039240492
-
Statistical mechanics of ensemble learning
-
Krogh, A., Sollich, P.: Statistical mechanics of ensemble learning. Physical Review E 55 (1997) 811-825
-
(1997)
Physical Review E
, vol.55
, pp. 811-825
-
-
Krogh, A.1
Sollich, P.2
-
12
-
-
0000926506
-
When neural networks disagree: Ensemble methods for hybrid neural networks
-
Mammone, R. J. (ed.). Chapman-Hall
-
Perrone, M. P., Cooper, L. N.: When neural networks disagree: Ensemble methods for hybrid neural networks. In: Mammone, R. J. (ed.): Neural Networks for Speech and Image Processing. Chapman-Hall (1993) 126-142
-
(1993)
Neural Networks for Speech and Image Processing
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
13
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Tesauro, G., Touretzky, D., Leen, D. (eds.). MIT Press
-
Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Tesauro, G., Touretzky, D., Leen, D. (eds.): Advances in Neural Information Processing Systems. MIT Press (1995) 231-238
-
(1995)
Advances in Neural Information Processing Systems
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
|