메뉴 건너뛰기




Volumn , Issue , 2005, Pages 405-412

Controversial empirical results on batch versus one pass online algorithms

Author keywords

Batch; Neural Gas; One pass online; SOM

Indexed keywords

BATCH; LEARNING PARAMETERS; NEURAL GAS; NEURAL GAS ALGORITHMS; ON-LINE ALGORITHMS; ON-LINE NEURAL NETWORKS; ONE-PASS; SOM;

EID: 33745901146     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (18)
  • 2
    • 0003289730 scopus 로고
    • Numerical continuation methods
    • Springer Series in Computational Mathematics. Berlin/Heidelberg, Germany: SpringerVerlag
    • E. L. Allgower and K. Georg, Numerical Continuation Methods. An Introduction, Vol. 13, Springer Series in Computational Mathematics. Berlin/Heidelberg, Germany: SpringerVerlag, 1990.
    • (1990) An Introduction , vol.13
    • Allgower, E.L.1    Georg, K.2
  • 3
    • 0742271716 scopus 로고    scopus 로고
    • On the use of self-organizing maps to accelerate vector quantization
    • E. Bodt, M. Cottrell, P. Letremy, M. Verleysen (2004), On the use of self-organizing maps to accelerate vector quantization, Neurocomputing, Vol 56, p. 187-203.
    • (2004) Neurocomputing , vol.56 , pp. 187-203
    • Bodt, E.1    Cottrell, M.2    Letremy, P.3    Verleysen, M.4
  • 4
    • 0028996768 scopus 로고
    • Lossy compression of individual signals based on string matching and one pass codebook design
    • Detroit, MI
    • C. Chan, M. Vetterli (1995), Lossy Compression of Individual Signals Based on String Matching and One Pass Codebook Design, ICASSP'95, Detroit, MI.
    • (1995) ICASSP'95
    • Chan, C.1    Vetterli, M.2
  • 5
    • 0029196051 scopus 로고
    • Optimal adaptive K-means algorithm with dynamic adjustment of learning rate
    • C. Chinrungrueng, C. Séquin (1995), Optimal Adaptive K-Means Algorithm with Dynamic Adjustment of Learning Rate, IEEE Trans. on Neural Networks, Vol. 6(1), p. 157-169.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.1 , pp. 157-169
    • Chinrungrueng, C.1    Séquin, C.2
  • 6
    • 33745902277 scopus 로고    scopus 로고
    • Advantages and drawbacks of the batch kohonen algorithm
    • M. Verleysen (ed) Brugge, Editions D Facto, Bruxelles
    • Fort J.C., Letrémy P., Cottrell M. (2002), Advantages and Drawbacks of the Batch Kohonen Algorithm, in M. Verleysen (ed), Proc. of ESANN'2002, Brugge, Editions D Facto, Bruxelles, p. 223-230.
    • (2002) Proc. of ESANN'2002 , pp. 223-230
    • Fort, J.C.1    Letrémy, P.2    Cottrell, M.3
  • 7
    • 0031069945 scopus 로고    scopus 로고
    • The LBG-U method for vector quantization - An improvement over LBG inspired from neural networks
    • B. Fritzke (1997), The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks, Neural Processing Letters, Vol. 5(1) p. 35-45.
    • (1997) Neural Processing Letters , vol.5 , Issue.1 , pp. 35-45
    • Fritzke, B.1
  • 9
    • 0020098639 scopus 로고
    • On the structure of vector quantizers
    • A. Gersho (1982), On the structure of vector quantizers, IEEE Trans. Inf. Th., 28(2), p. 157-166.
    • (1982) IEEE Trans. Inf. Th. , vol.28 , Issue.2 , pp. 157-166
    • Gersho, A.1
  • 12
    • 0021412027 scopus 로고
    • Vector quantization
    • R.M. Gray (1984), Vector Quantization, IEEE ASSP, Vol. 1, p. 4-29.
    • (1984) IEEE ASSP , vol.1 , pp. 4-29
    • Gray, R.M.1
  • 13
    • 0032099050 scopus 로고    scopus 로고
    • Competitive learning algorithms for robust vector quantization
    • T. Hofmann and J. M. Buhmann (1998) Competitive Learning Algorithms for Robust Vector Quantization IEEE Trans. Signal Processing 46(6): 1665-1675
    • (1998) IEEE Trans. Signal Processing , vol.46 , Issue.6 , pp. 1665-1675
    • Hofmann, T.1    Buhmann, J.M.2
  • 15
    • 0345404396 scopus 로고    scopus 로고
    • The self-organising map
    • T. Kohonen (1998), The self-organising map, Neurocomputing, Vol 21, p. 1-6.
    • (1998) Neurocomputing , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 16
    • 0018918171 scopus 로고
    • An algorithm for vector quantizer design
    • Y. Linde, A. Buzo, R.M. Gray (1980), An algorithm for vector quantizer design, IEEE Trans. Comm., 28, p. 84-95.
    • (1980) IEEE Trans. Comm. , vol.28 , pp. 84-95
    • Linde, Y.1    Buzo, A.2    Gray, R.M.3
  • 17
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and his application to time series prediction
    • T. Martinetz, S. Berkovich, K. Schulten (1993), Neural-Gas network for vector quantization and his application to time series prediction, IEEE trans. Neural Networks, Vol. 4(4), p. 558-569.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.