메뉴 건너뛰기




Volumn 254, Issue 1, 2006, Pages 1-28

Collapsing sequences of solutions to the Ricci flow on 3-manifolds with almost nonnegative curvature

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33745842582     PISSN: 00255874     EISSN: 14321823     Source Type: Journal    
DOI: 10.1007/s00209-005-0900-z     Document Type: Review
Times cited : (5)

References (27)
  • 1
    • 0003365247 scopus 로고    scopus 로고
    • A course in metric geometry
    • [BBI], Amer. Math. Soc., Providence. RI. Corrections of typos and small errors to the book "A Course in Metric Geometry"
    • [BBI] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Grad Studies Math. 33, Amer. Math. Soc., Providence. RI, 2001. Corrections of typos and small errors to the book "A Course in Metric Geometry": http://www.pdmi.ras.ru/staff/burago.html#English
    • (2001) Grad Studies Math. , vol.33
    • Burago, D.1    Burago, Y.2    Ivanov, S.3
  • 2
    • 0043060082 scopus 로고
    • Model geometries in the space of Riemannian structures and Hamilton's flow
    • [CM]
    • [CM] Carfora, M., Marzuoli, A.: Model geometries in the space of Riemannian structures and Hamilton's flow. Classical Quantum Gravity 5, 659-693 (1988)
    • (1988) Classical Quantum Gravity , vol.5 , pp. 659-693
    • Carfora, M.1    Marzuoli, A.2
  • 3
    • 84972518375 scopus 로고
    • Some examples of manifolds of nonnegative curvature
    • [Ch]
    • [Ch] Cheeger, J.: Some examples of manifolds of nonnegative curvature. J. Diff. Geom. 8, 623-628 (1972)
    • (1972) J. Diff. Geom. , vol.8 , pp. 623-628
    • Cheeger, J.1
  • 4
    • 84972538920 scopus 로고
    • Collapsing Riemannian manifolds while keeping their curvature bounded, I
    • [CG1]
    • [CG1] Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded, I. J. Diff. Geom. 23, 309-346 (1986)
    • (1986) J. Diff. Geom. , vol.23 , pp. 309-346
    • Cheeger, J.1    Gromov, M.2
  • 5
    • 84972508732 scopus 로고
    • Collapsing Riemannian manifolds while keeping their curvature bounded, II
    • [CG1]
    • [CG1] Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded, II. J. Diff. Geom. 32, 269-298 (1990)
    • (1990) J. Diff. Geom. , vol.32 , pp. 269-298
    • Cheeger, J.1    Gromov, M.2
  • 6
    • 84972535477 scopus 로고
    • Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds
    • [CGT]
    • [CGT] Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Diff. Geom. 17, 15-53 (1982)
    • (1982) J. Diff. Geom. , vol.17 , pp. 15-53
    • Cheeger, J.1    Gromov, M.2    Taylor, M.3
  • 7
    • 0000596501 scopus 로고
    • On the upper estimate of the heat kernel of a complete Riemannian manifold
    • [CLY]
    • [CLY] Cheng, S.-Y., Li, P., Yau, S.-T.: On the upper estimate of the heat kernel of a complete Riemannian manifold. Amer. J. Math. 103(5), 1021-1063 (1981)
    • (1981) Amer. J. Math. , vol.103 , Issue.5 , pp. 1021-1063
    • Cheng, S.-Y.1    Li, P.2    Yau, S.-T.3
  • 8
    • 0742271328 scopus 로고    scopus 로고
    • Metric transformations under collapsing of Riemannian manifolds
    • [COL]
    • [COL] Chow, B., Glickenstein, D., Lu, P.: Metric transformations under collapsing of Riemannian manifolds. Math. Res. Lett. 10, 737-746 (2003)
    • (2003) Math. Res. Lett. , vol.10 , pp. 737-746
    • Chow, B.1    Glickenstein, D.2    Lu, P.3
  • 9
    • 0042809554 scopus 로고    scopus 로고
    • Hamilton's injectivity radius estimate for sequences with almost nonnegative curvature operators
    • [CKL]
    • [CKL] Chow, B., Knopf, D., Lu, P.: Hamilton's injectivity radius estimate for sequences with almost nonnegative curvature operators. Comm. Anal. Geom. 10(5), 1151-1180 (2002)
    • (2002) Comm. Anal. Geom. , vol.10 , Issue.5 , pp. 1151-1180
    • Chow, B.1    Knopf, D.2    Lu, P.3
  • 10
    • 84972535799 scopus 로고
    • A boundary of the set of Riemannian manifolds with bounded curvatures and diameters
    • [F]
    • [F] Fukaya, K.: A boundary of the set of Riemannian manifolds with bounded curvatures and diameters. J. Diff. Geom. 28, 1-21 (1988)
    • (1988) J. Diff. Geom. , vol.28 , pp. 1-21
    • Fukaya, K.1
  • 11
    • 4243148519 scopus 로고    scopus 로고
    • Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates
    • [Gl]
    • [Gl] Glickenstein, D.: Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates. Geom. Topol. 7, 487-510 (2003)
    • (2003) Geom. Topol. , vol.7 , pp. 487-510
    • Glickenstein, D.1
  • 12
    • 84972545826 scopus 로고
    • Almost flat manifolds
    • [Gr]
    • [Gr] Gromov, M.: Almost flat manifolds. J. Diff. Geom. 13, 231-241 (1978)
    • (1978) J. Diff. Geom. , vol.13 , pp. 231-241
    • Gromov, M.1
  • 14
    • 84972513449 scopus 로고
    • Three-manifolds with positive Ricci curvature
    • [H1]
    • [H1] Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255-306 (1982)
    • (1982) J. Diff. Geom. , vol.17 , pp. 255-306
    • Hamilton, R.S.1
  • 15
    • 84972555746 scopus 로고
    • Four-manifolds with positive curvature operator
    • [H2]
    • [H2] Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Diff. Geom. 24, 153-179 (1986)
    • (1986) J. Diff. Geom. , vol.24 , pp. 153-179
    • Hamilton, R.S.1
  • 16
    • 84972545030 scopus 로고
    • Eternal solutions to the Ricci flow
    • [H3]
    • [H3] Hamilton, R.S.: Eternal solutions to the Ricci flow. J. Diff. Geom. 38, 1-11 (1993)
    • (1993) J. Diff. Geom. , vol.38 , pp. 1-11
    • Hamilton, R.S.1
  • 17
    • 0001825291 scopus 로고
    • The formation of singularities in the Ricci flow
    • [H4]. International Press
    • [H4] Hamilton, R.S.: The formation of singularities in the Ricci flow. Surveys in Differential Geometry 2. International Press. 1995 pp. 7-136
    • (1995) Surveys in Differential Geometry , vol.2 , pp. 7-136
    • Hamilton, R.S.1
  • 18
    • 0000818415 scopus 로고
    • A compactness property for solutions of the Ricci flow
    • [H5]
    • [H5] Hamilton, R.S.: A compactness property for solutions of the Ricci flow. Amer. J. Math. 117, 545-572 (1995)
    • (1995) Amer. J. Math. , vol.117 , pp. 545-572
    • Hamilton, R.S.1
  • 19
    • 0000194997 scopus 로고    scopus 로고
    • Nonsingular solutions of the Ricci Flow on three-manifolds
    • [H6]
    • [H6] Hamilton, R.S.: Nonsingular solutions of the Ricci Flow on three-manifolds. Comm. Anal. Geom. 7, 695-729 (1999)
    • (1999) Comm. Anal. Geom. , vol.7 , pp. 695-729
    • Hamilton, R.S.1
  • 20
    • 0040863526 scopus 로고
    • Ricci solitons on compact three-manifolds
    • [Iv]
    • [Iv] Ivey, T.: Ricci solitons on compact three-manifolds. Diff. Geom. Appl. 3, 301-307 (1993)
    • (1993) Diff. Geom. Appl. , vol.3 , pp. 301-307
    • Ivey, T.1
  • 21
    • 0003439973 scopus 로고    scopus 로고
    • [Pet], GTM Springer-Verlag, New York
    • [Pet] Petersen, P.: Riemannian geometry, GTM, 171 Springer-Verlag, New York, 1998
    • (1998) Riemannian Geometry , vol.171
    • Petersen, P.1
  • 25
    • 84972498355 scopus 로고
    • The limiting eta-invariant of collapsed three-manifolds
    • [R]
    • [R] Roug, X.: The limiting eta-invariant of collapsed three-manifolds. J. Diff. Geom. 37, 535-568 (1993)
    • (1993) J. Diff. Geom. , vol.37 , pp. 535-568
    • Roug, X.1
  • 26
    • 0039015730 scopus 로고    scopus 로고
    • Collapsing three-manifolds under a lower curvature bound
    • [SY1]
    • [SY1] Shioya, T., Yamaguchi, T.: Collapsing three-manifolds under a lower curvature bound. J. Diff. Geom. 56(1), 1-66 (2000)
    • (2000) J. Diff. Geom. , vol.56 , Issue.1 , pp. 1-66
    • Shioya, T.1    Yamaguchi, T.2
  • 27
    • 23044475900 scopus 로고    scopus 로고
    • Volume collapsed three-manifolds with a lower curvature bound
    • [SY2]
    • [SY2] Shioya, T., Yamaguchi, T.: Volume collapsed three-manifolds with a lower curvature bound. Math. Ann. 333, 131-155 (2005)
    • (2005) Math. Ann. , vol.333 , pp. 131-155
    • Shioya, T.1    Yamaguchi, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.