메뉴 건너뛰기




Volumn 19, Issue 4, 2003, Pages 677-690

The existence of Silnikov's orbit in four-dimensional Duffing's systems

Author keywords

Duffing's systems; Melnikov method; Silnikov's abit

Indexed keywords


EID: 33745823041     PISSN: 01689673     EISSN: 16183932     Source Type: Journal    
DOI: 10.1007/210255-003-0141-z     Document Type: Article
Times cited : (8)

References (17)
  • 1
    • 0000119416 scopus 로고
    • On structurally unstable attracting limit sets of Lorenz attractor type
    • Afraimovich, V.S., Bykov, V.V., Silnikov, L.P. On structurally unstable attracting limit sets of Lorenz attractor type. Trans. Mose. Math. Soc., 2: 153-216 (1983)
    • (1983) Trans. Mose. Math. Soc , vol.2 , pp. 153-216
    • Afraimovich, V.S.1    Bykov, V.V.2    Silnikov, L.P.3
  • 3
    • 21844517849 scopus 로고
    • Constructing homoclinic orbits and chaotic attractors
    • Bo, Deng. Constructing homoclinic orbits and chaotic attractors. Inter. J. Bif. and Chaos., 4: 823-841 (1994)
    • (1994) Inter. J. Bif. and Chaos , vol.4 , pp. 823-841
    • Bo, D.1
  • 4
    • 34250627892 scopus 로고
    • Geometric singular perturbation theory for ordinary differential equation
    • Fenichel, N. Geometric singular perturbation theory for ordinary differential equation. SIAM J. Diff. Eqns., 31: 53-98 (1979)
    • (1979) SIAM J. Diff. Eqns , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 5
    • 0001356311 scopus 로고
    • Persistence and smoothness of invariant manifold for flows
    • Fenichel, N. Persistence and smoothness of invariant manifold for flows. Ind. Univ. Math. J., 21: 193-225 (1971)
    • (1971) Ind. Univ. Math. J , vol.21 , pp. 193-225
    • Fenichel, N.1
  • 6
    • 0007646794 scopus 로고
    • Generation of a countable set of homoclinic flows through bifurcation
    • Garspard, P. Generation of a countable set of homoclinic flows through bifurcation. Phys. Lett., 97A: 1-4 (1983)
    • (1983) Phys. Lett , vol.97 A , pp. 1-4
    • Garspard, P.1
  • 7
    • 0001768333 scopus 로고
    • What can we learn from homoclinic orbits in chaotic systems?
    • Garspard, P., Nicolis G. What can we learn from homoclinic orbits in chaotic systems? J. Stat. Phys., 31: 499-518 (1983)
    • (1983) J. Stat. Phys , vol.31 , pp. 499-518
    • Garspard, P.1    Nicolis, G.2
  • 8
    • 84912667125 scopus 로고
    • Homoclinic bifurcation in ordinary differential equations
    • H. Degn, A.V. Holden and L. Olsen, eds, Plenum, New York
    • Glendinning, P. Homoclinic bifurcation in ordinary differential equations. In: Auto ASI Life Sciences, Chaos in Biological Systems, H. Degn., A.V. Holden and L. Olsen, eds., Plenum, New York, 1987
    • (1987) Auto ASI Life Sciences, Chaos in Biological Systems
    • Glendinning, P.1
  • 10
    • 0021942589 scopus 로고
    • Knotted period orbits in subspensions of smale's horseshoe: Torus knots and bifurcation sequences
    • Holmes, P.J., Williams, R.F. Knotted period orbits in subspensions of smale's horseshoe: torus knots and bifurcation sequences. Arch. Rat. Mech. Analysis, 90: 115-194 (1985)
    • (1985) Arch. Rat. Mech. Analysis , vol.90 , pp. 115-194
    • Holmes, P.J.1    Williams, R.F.2
  • 11
    • 0002307231 scopus 로고
    • Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-gordon equation
    • Kovačič, G., Wiggins, S. Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-gordon equation. Physica D, 57: 185-225 (1992)
    • (1992) Physica D , vol.57 , pp. 185-225
    • Kovačič, G.1    Wiggins, S.2
  • 13
    • 0001234956 scopus 로고
    • A case of the existence of a denumerable set of periodic motions
    • Silnikov, L.P. A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl., 6: 163-167 (1965)
    • (1965) Sov. Math. Dokl , vol.6 , pp. 163-167
    • Silnikov, L.P.1
  • 15
    • 0000028334 scopus 로고
    • Homoclinic orbits in slowly varying oscillators
    • Wiggins, S., Holmes, P.J. Homoclinic orbits in slowly varying oscillators. SIAM J. Math. Anal., 18: 612-629 (1988)
    • (1988) SIAM J. Math. Anal , vol.18 , pp. 612-629
    • Wiggins, S.1    Holmes, P.J.2
  • 17
    • 0026839330 scopus 로고
    • Chaotic dynamics of a quasi-periodically forced beam
    • Yagasaki, K. Chaotic dynamics of a quasi-periodically forced beam. Jorn. of Applied Mechanics, 114: 161-167 (1992)
    • (1992) Jorn. of Applied Mechanics , vol.114 , pp. 161-167
    • Yagasaki, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.