-
1
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16 (2002) 321-357
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
3
-
-
10044221878
-
Local fisher embedding
-
Cambridge, UK
-
de Ridder, D., Loog, M., Reinders, M.J.T.: Local fisher embedding. In: Proceddings of the 17th International Conference on Pattern Recognition. Cambridge, UK (2004) 295-298
-
(2004)
Proceddings of the 17th International Conference on Pattern Recognition
, pp. 295-298
-
-
De Ridder, D.1
Loog, M.2
Reinders, M.J.T.3
-
4
-
-
85156202169
-
Global versus local methods in nonlinear dimensionality reduction
-
Becker, S., Thrun, S., Overmayer, K. (eds.). MIT Press, Cambridge, MA
-
de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Becker, S., Thrun, S., Overmayer, K. (eds.): Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, MA (2002) 705-712
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
, pp. 705-712
-
-
De Silva, V.1
Tenenbaum, J.B.2
-
5
-
-
0003922190
-
-
Wiley, New York, NY
-
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edition. Wiley, New York, NY (2004)
-
(2004)
Pattern Classification, 2nd Edition
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
6
-
-
28444473249
-
Supervised nonlinear dimensionality reduction for visualization and classification
-
Geng, X., Zhan, D.-C., Zhou, Z.-H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on System, Man and Cybernetics-Part B: Cybernetics 35 (2005) 1098-1107
-
(2005)
IEEE Transactions on System, Man and Cybernetics-Part B: Cybernetics
, vol.35
, pp. 1098-1107
-
-
Geng, X.1
Zhan, D.-C.2
Zhou, Z.-H.3
-
8
-
-
0033096854
-
Face recognition using the nearest feature line method
-
Li, S.Z., Lu. J.: Face recognition using the nearest feature line method. IEEE Transactions on Neural networks 10 (1999) 439-443
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 439-443
-
-
Li, S.Z.1
Lu, J.2
-
9
-
-
0034704222
-
Nonlinear dimensionality reduction by local linear embedding
-
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by local linear embedding. Science 290 (2000) 2323-2326
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
10
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
11
-
-
0036885187
-
Face recognition with one training image per person
-
Wu, J., Zhou, Z.-H.: Face recognition with one training image per person. Pattern Recognition Letters 23 (2002) 1711-1719
-
(2002)
Pattern Recognition Letters
, vol.23
, pp. 1711-1719
-
-
Wu, J.1
Zhou, Z.-H.2
-
12
-
-
26944469151
-
Unified locally linear embedding and linear discriminant analysis algorithm (ULLELDA) for face recognition
-
Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds.). Springer, Berlin
-
Zhang, J., Shen, H., Zhou, Z.-H.: Unified locally linear embedding and linear discriminant analysis algorithm (ULLELDA) for face recognition. In: Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds.): Lecture Notes in Computer Science 3338. Springer, Berlin (2004) 296-304
-
(2004)
Lecture Notes in Computer Science
, vol.3338
, pp. 296-304
-
-
Zhang, J.1
Shen, H.2
Zhou, Z.-H.3
-
13
-
-
2142658770
-
Locally nearest neighbor classifiers for pattern classification
-
Zheng, W., Zhao, L., Zou, C.: Locally nearest neighbor classifiers for pattern classification. Pattern Recognition 37 (2004) 1307-1309.
-
(2004)
Pattern Recognition
, vol.37
, pp. 1307-1309
-
-
Zheng, W.1
Zhao, L.2
Zou, C.3
-
16
-
-
0038030864
-
Extracing symbolic rules from trained neural network ensembles
-
Zhou, Z.-H., Jiang, Y., Chen, S.-F.: Extracing symbolic rules from trained neural network ensembles. AI Communications 16 (2003)3-15
-
(2003)
AI Communications
, vol.16
, pp. 3-15
-
-
Zhou, Z.-H.1
Jiang, Y.2
Chen, S.-F.3
|