메뉴 건너뛰기




Volumn 3911 LNCS, Issue , 2006, Pages 1042-1049

A cache oblivious algorithm for matrix multiplication based on Peano's space filling curve

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER ARCHITECTURE; DATA STORAGE EQUIPMENT; MATRIX ALGEBRA; PARALLEL ALGORITHMS;

EID: 33745777806     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11752578_126     Document Type: Conference Paper
Times cited : (6)

References (9)
  • 1
    • 33746256776 scopus 로고    scopus 로고
    • Cache oblivious matrix multiplication using an element ordering based on the Peano curve
    • submitted
    • M. Bader, C. Zenger. Cache oblivious matrix multiplication using an element ordering based on the Peano curve, Linear Algebra and its Applications, submitted
    • Linear Algebra and its Applications
    • Bader, M.1    Zenger, C.2
  • 5
    • 33745793067 scopus 로고    scopus 로고
    • On reducing TLB misses in matrix multiplication
    • K. Goto, R. van de Geijn. On Reducing TLB Misses in Matrix Multiplication. TOMS, under revision, http://www.cs.utexas.edu/users/flame/pubs. html
    • TOMS, under Revision
    • Goto, K.1    Van De Geijn, R.2
  • 6
    • 0031273280 scopus 로고    scopus 로고
    • Recursion leads to automatic variable blocking for dense linear-algebra algorithms
    • F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra algorithms. IBM Journal of Research and Development 41 (6), 1999
    • (1999) IBM Journal of Research and Development , vol.41 , Issue.6
    • Gustavson, F.G.1
  • 8
    • 0343462141 scopus 로고    scopus 로고
    • Automated empirical optimization of software and the ATLAS project
    • R. C. Whaley, A. Petitet, J.J. Dongarra. Automated Empirical Optimization of Software and the ATLAS Project. Parallel Computing 27(1-2), 2001, pp. 3-35
    • (2001) Parallel Computing , vol.27 , Issue.1-2 , pp. 3-35
    • Whaley, R.C.1    Petitet, A.2    Dongarra, J.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.