메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages 1409-1436

Fast SDP relaxations of graph cut clustering, transduction,and other combinatorial problems

Author keywords

Combinatorial optimization; Convex transduction; Max cut; Normalized graph cut; Relaxation; Semi definite programming; Semi supervised learning

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER PROGRAMMING; GRAPH THEORY; LEARNING SYSTEMS; POLYNOMIALS; PROBLEM SOLVING;

EID: 33745769084     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (43)

References (22)
  • 1
    • 84867947404 scopus 로고    scopus 로고
    • Strengthened semidefinite relaxations via a second lifting for the MAX-CUT problem
    • M. F. Anjos and H. Wolkowicz. Strengthened semidefinite relaxations via a second lifting for the MAX-CUT problem. Discrete Applied Mathematics, 119:79-106, 2002.
    • (2002) Discrete Applied Mathematics , vol.119 , pp. 79-106
    • Anjos, M.F.1    Wolkowicz, H.2
  • 4
    • 1542337156 scopus 로고    scopus 로고
    • A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
    • S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming (series B), 95(2):329-357, 2003.
    • (2003) Mathematical Programming (Series B) , vol.95 , Issue.2 , pp. 329-357
    • Burer, S.1    Monteiro, R.D.C.2
  • 5
    • 21644465788 scopus 로고    scopus 로고
    • Local minima and convergence in low-rank semidefinite programming
    • S. Burer and R. D. C. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical Programming (series A), 103(3):427-444, 2005.
    • (2005) Mathematical Programming (Series A) , vol.103 , Issue.3 , pp. 427-444
    • Burer, S.1    Monteiro, R.D.C.2
  • 6
    • 50649084677 scopus 로고    scopus 로고
    • Cluster kernels for semi-supervised learning
    • S. Becker, S. Thrun, and K. Obermayer, editors. MIT Press, Cambridge, MA
    • O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Chapelle, O.1    Weston, J.2    Schölkopf, B.3
  • 7
    • 84898954907 scopus 로고    scopus 로고
    • Spectral kernel methods for clustering
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA. MIT Press
    • N. Cristianini, J. Shawe-Taylor, and J. Kandola. Spectral kernel methods for clustering. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Cristianini, N.1    Shawe-Taylor, J.2    Kandola, J.3
  • 11
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42 (6):1115-1145, 1995.
    • (1995) Journal of the ACM , vol.42 , Issue.6 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 12
    • 0005740806 scopus 로고    scopus 로고
    • Semidefinite programming for combinatorial optimization
    • TU Berlin, Konrad-Zuse-Zentrum Berlin
    • C. Helmberg. Semidefinite programming for combinatorial optimization. Habilitationsschrift ZIB-Report ZR-00-34, TU Berlin, Konrad-Zuse-Zentrum Berlin, 2000.
    • (2000) Habilitationsschrift ZIB-report , vol.ZR-00-34
    • Helmberg, C.1
  • 13
    • 0034415006 scopus 로고    scopus 로고
    • A spectral bundle method for semidefinite programming
    • C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 10:673-696, 2000.
    • (2000) SIAM Journal on Optimization , vol.10 , pp. 673-696
    • Helmberg, C.1    Rendl, F.2
  • 16
    • 33745774374 scopus 로고    scopus 로고
    • Finding good nearly balanced cuts in power law graphs
    • Yahoo! Research
    • K. Lang. Finding good nearly balanced cuts in power law graphs. Technical Report YRL-2004-036, Yahoo! Research, 2004.
    • (2004) Technical Report , vol.YRL-2004-036
    • Lang, K.1
  • 17
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA. MIT Press
    • A. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Ng, A.1    Jordan, M.I.2    Weiss, Y.3
  • 21
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49-95, 1996.
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 22
    • 33745803230 scopus 로고    scopus 로고
    • On semidefinite relaxation for normalized k-cut and connections to spectral clustering
    • Division of Computer Science, University of California, Berkeley
    • E. P. Xing and M. I. Jordan. On semidefinite relaxation for normalized k-cut and connections to spectral clustering. Technical Report CSD-03-1265, Division of Computer Science, University of California, Berkeley, 2003.
    • (2003) Technical Report , vol.CSD-03-1265
    • Xing, E.P.1    Jordan, M.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.