메뉴 건너뛰기




Volumn 3907 LNCS, Issue , 2006, Pages 79-90

Robust SVM-based biomarker selection with noisy mass spectrometric proteomic data

Author keywords

[No Author keywords available]

Indexed keywords

BIOMARKERS; DIAGNOSIS; DISEASES; LEARNING SYSTEMS; MASS SPECTROMETRY; PERTURBATION TECHNIQUES; ROBUSTNESS (CONTROL SYSTEMS); VECTORS;

EID: 33745767687     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11732242_8     Document Type: Conference Paper
Times cited : (11)

References (28)
  • 1
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(6):1145-1159, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.6 , pp. 1145-1159
    • Bradley, A.P.1
  • 3
    • 1542378202 scopus 로고    scopus 로고
    • Analysis of serum proteomic patterns for early cancer diagnosis: Drawing attention to potential problems
    • E.P. Diamandis. Analysis of serum proteomic patterns for early cancer diagnosis: Drawing attention to potential problems. Journal of the National Cancer Institute, 96(5):353-356, 2004.
    • (2004) Journal of the National Cancer Institute , vol.96 , Issue.5 , pp. 353-356
    • Diamandis, E.P.1
  • 4
    • 0037399476 scopus 로고    scopus 로고
    • SELDI-TOF MS for diagnostic proteomics
    • H.J. Issaq et al. SELDI-TOF MS for diagnostic proteomics. Anal. Chem., 75(7):148A-155A, 2003.
    • (2003) Anal. Chem. , vol.75 , Issue.7
    • Issaq, H.J.1
  • 5
    • 0037120949 scopus 로고    scopus 로고
    • Serum proteomic patterns for detection of prostate cancer
    • Petricoin E.F. et al. Serum proteomic patterns for detection of prostate cancer. Journal of the National Cancer Institute, 94(20):1576-1578, 2002.
    • (2002) Journal of the National Cancer Institute , vol.94 , Issue.20 , pp. 1576-1578
    • Petricoin, E.F.1
  • 6
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin E.F. et al. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet, 359(9306):572-7, 2002.
    • (2002) The Lancet , vol.359 , Issue.9306 , pp. 572-577
    • Petricoin, E.F.1
  • 7
    • 0036791428 scopus 로고    scopus 로고
    • Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
    • Qu Y. et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem, 48(10):1835-43, 2002.
    • (2002) Clin. Chem , vol.48 , Issue.10 , pp. 1835-1843
    • Qu, Y.1
  • 8
    • 0345166891 scopus 로고    scopus 로고
    • Detection of cancer-specific markers amid massive mass spectral data
    • Zhu W. et al. Detection of cancer-specific markers amid massive mass spectral data. PNAS, 100(25):14666-14671, 2003.
    • (2003) PNAS , vol.100 , Issue.25 , pp. 14666-14671
    • Zhu, W.1
  • 9
    • 2342622786 scopus 로고    scopus 로고
    • Leave one out error, stability, and generalization of voting combinations of classifiers
    • T. Evgeniou, M. Pontil, and A. Elisseeff. Leave one out error, stability, and generalization of voting combinations of classifiers. Mach. Learn., 55(1):71-97, 2004.
    • (2004) Mach. Learn. , vol.55 , Issue.1 , pp. 71-97
    • Evgeniou, T.1    Pontil, M.2    Elisseeff, A.3
  • 10
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Special Issue on variable and feature selection
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Machine Learning, 3:1157-1182, 2003. Special Issue on variable and feature selection.
    • (2003) Machine Learning , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1-3):389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 0036324715 scopus 로고    scopus 로고
    • Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer
    • J. Li, Z. Zhang, J. Rosenzweig, Y.Y. Wang, and D.W. Chan. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry, 48(8):1296-1304, 2002.
    • (2002) Clinical Chemistry , vol.48 , Issue.8 , pp. 1296-1304
    • Li, J.1    Zhang, Z.2    Rosenzweig, J.3    Wang, Y.Y.4    Chan, D.W.5
  • 17
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • H. Liu, J. Li, and L. Wong. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics, 13:51-60, 2002.
    • (2002) Genome Informatics , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 19
    • 7444234286 scopus 로고    scopus 로고
    • Getting the noise out of gene arrays
    • E. Marshall. Getting the noise out of gene arrays. Science, 306:630-631, 2004. Issue 5696.
    • (2004) Science , vol.306 , Issue.5696 , pp. 630-631
    • Marshall, E.1
  • 21
    • 13844322072 scopus 로고    scopus 로고
    • Lessons from controversy: Ovarian cancer screening and serum proteomics
    • D.F. Ransohoff. Lessons from controversy: Ovarian cancer screening and serum proteomics. Journal of the National Cancer Institute, 97:315-319, 2005.
    • (2005) Journal of the National Cancer Institute , vol.97 , pp. 315-319
    • Ransohoff, D.F.1
  • 24
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • Michiels S., Koscielny S., and Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. The Lancet, 365(9458):488-92, 2005.
    • (2005) The Lancet , vol.365 , Issue.9458 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 28
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based filter solution. In ICML, pages 856-863, 2003.
    • (2003) ICML , pp. 856-863
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.