-
1
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(6):1145-1159, 1997.
-
(1997)
Pattern Recognition
, vol.30
, Issue.6
, pp. 1145-1159
-
-
Bradley, A.P.1
-
3
-
-
1542378202
-
Analysis of serum proteomic patterns for early cancer diagnosis: Drawing attention to potential problems
-
E.P. Diamandis. Analysis of serum proteomic patterns for early cancer diagnosis: Drawing attention to potential problems. Journal of the National Cancer Institute, 96(5):353-356, 2004.
-
(2004)
Journal of the National Cancer Institute
, vol.96
, Issue.5
, pp. 353-356
-
-
Diamandis, E.P.1
-
4
-
-
0037399476
-
SELDI-TOF MS for diagnostic proteomics
-
H.J. Issaq et al. SELDI-TOF MS for diagnostic proteomics. Anal. Chem., 75(7):148A-155A, 2003.
-
(2003)
Anal. Chem.
, vol.75
, Issue.7
-
-
Issaq, H.J.1
-
5
-
-
0037120949
-
Serum proteomic patterns for detection of prostate cancer
-
Petricoin E.F. et al. Serum proteomic patterns for detection of prostate cancer. Journal of the National Cancer Institute, 94(20):1576-1578, 2002.
-
(2002)
Journal of the National Cancer Institute
, vol.94
, Issue.20
, pp. 1576-1578
-
-
Petricoin, E.F.1
-
6
-
-
0037116832
-
Use of proteomic patterns in serum to identify ovarian cancer
-
Petricoin E.F. et al. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet, 359(9306):572-7, 2002.
-
(2002)
The Lancet
, vol.359
, Issue.9306
, pp. 572-577
-
-
Petricoin, E.F.1
-
7
-
-
0036791428
-
Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
-
Qu Y. et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem, 48(10):1835-43, 2002.
-
(2002)
Clin. Chem
, vol.48
, Issue.10
, pp. 1835-1843
-
-
Qu, Y.1
-
8
-
-
0345166891
-
Detection of cancer-specific markers amid massive mass spectral data
-
Zhu W. et al. Detection of cancer-specific markers amid massive mass spectral data. PNAS, 100(25):14666-14671, 2003.
-
(2003)
PNAS
, vol.100
, Issue.25
, pp. 14666-14671
-
-
Zhu, W.1
-
9
-
-
2342622786
-
Leave one out error, stability, and generalization of voting combinations of classifiers
-
T. Evgeniou, M. Pontil, and A. Elisseeff. Leave one out error, stability, and generalization of voting combinations of classifiers. Mach. Learn., 55(1):71-97, 2004.
-
(2004)
Mach. Learn.
, vol.55
, Issue.1
, pp. 71-97
-
-
Evgeniou, T.1
Pontil, M.2
Elisseeff, A.3
-
10
-
-
33745561205
-
An introduction to variable and feature selection
-
Special Issue on variable and feature selection
-
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Machine Learning, 3:1157-1182, 2003. Special Issue on variable and feature selection.
-
(2003)
Machine Learning
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
11
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1-3):389-422, 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
15
-
-
0036324715
-
Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer
-
J. Li, Z. Zhang, J. Rosenzweig, Y.Y. Wang, and D.W. Chan. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry, 48(8):1296-1304, 2002.
-
(2002)
Clinical Chemistry
, vol.48
, Issue.8
, pp. 1296-1304
-
-
Li, J.1
Zhang, Z.2
Rosenzweig, J.3
Wang, Y.Y.4
Chan, D.W.5
-
17
-
-
0038021028
-
A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
-
H. Liu, J. Li, and L. Wong. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics, 13:51-60, 2002.
-
(2002)
Genome Informatics
, vol.13
, pp. 51-60
-
-
Liu, H.1
Li, J.2
Wong, L.3
-
18
-
-
33847189200
-
Feature selection for classification with proteomic data of mixed quality
-
E. Marchiori, N.H.H. Heegaard, M. West-Nielsen, and C.R. Jimenez. Feature selection for classification with proteomic data of mixed quality. In Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pages 385-391, 2005.
-
(2005)
Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology
, pp. 385-391
-
-
Marchiori, E.1
Heegaard, N.H.H.2
West-Nielsen, M.3
Jimenez, C.R.4
-
19
-
-
7444234286
-
Getting the noise out of gene arrays
-
E. Marshall. Getting the noise out of gene arrays. Science, 306:630-631, 2004. Issue 5696.
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 630-631
-
-
Marshall, E.1
-
21
-
-
13844322072
-
Lessons from controversy: Ovarian cancer screening and serum proteomics
-
D.F. Ransohoff. Lessons from controversy: Ovarian cancer screening and serum proteomics. Journal of the National Cancer Institute, 97:315-319, 2005.
-
(2005)
Journal of the National Cancer Institute
, vol.97
, pp. 315-319
-
-
Ransohoff, D.F.1
-
22
-
-
0034227313
-
Dimensionality reduction using genetic algorithms
-
M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain. Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation, 4(2):164-171, 2000.
-
(2000)
IEEE Transactions on Evolutionary Computation
, vol.4
, Issue.2
, pp. 164-171
-
-
Raymer, M.L.1
Punch, W.F.2
Goodman, E.D.3
Kuhn, L.A.4
Jain, A.K.5
-
24
-
-
13444249852
-
Prediction of cancer outcome with microarrays: A multiple random validation strategy
-
Michiels S., Koscielny S., and Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. The Lancet, 365(9458):488-92, 2005.
-
(2005)
The Lancet
, vol.365
, Issue.9458
, pp. 488-492
-
-
Michiels, S.1
Koscielny, S.2
Hill, C.3
-
26
-
-
23744462675
-
Sample handling for mass spectrometric proteomic investigations of human sera
-
M. West-Nielsen, E.V. Hogdall, E. Marchiori, C.K. Hogdall, C. Schou, and N.H.H. Heegaard. Sample handling for mass spectrometric proteomic investigations of human sera. Analytical Chemistry, 11(16):5114-5123, 2005.
-
(2005)
Analytical Chemistry
, vol.11
, Issue.16
, pp. 5114-5123
-
-
West-Nielsen, M.1
Hogdall, E.V.2
Marchiori, E.3
Hogdall, C.K.4
Schou, C.5
Heegaard, N.H.H.6
-
28
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based filter solution. In ICML, pages 856-863, 2003.
-
(2003)
ICML
, pp. 856-863
-
-
Yu, L.1
Liu, H.2
|