-
1
-
-
0039092608
-
Viscous flows in two dimensions
-
For a review see
-
For a review see. Bensimon D., et al. Viscous flows in two dimensions. Rev. Mod. Phys. 58 (1986) 977-999
-
(1986)
Rev. Mod. Phys.
, vol.58
, pp. 977-999
-
-
Bensimon, D.1
-
7
-
-
33244457411
-
Singular limit of Hele-Shaw flow and dispersive regularization of shock waves
-
Bettelheim E., Wiegmann P., Agam O., and Zabrodin A. Singular limit of Hele-Shaw flow and dispersive regularization of shock waves. Phys. Rev. Lett. 95 (2005) 244504
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 244504
-
-
Bettelheim, E.1
Wiegmann, P.2
Agam, O.3
Zabrodin, A.4
-
9
-
-
33745739768
-
-
R. Teodorescu, P.B. Wiegmann, unpublished
-
-
-
-
16
-
-
0013137380
-
-
American Mathematical Society, Providence, RI
-
Etingof P., and Varchenko A. Why does the boundary of a round drop becomes a curve of order four. University Lecture Series vol. 3 (1992), American Mathematical Society, Providence, RI
-
(1992)
University Lecture Series
, vol.3
-
-
Etingof, P.1
Varchenko, A.2
-
17
-
-
33745752142
-
-
N. Seiberg, D. Shih, Minimal String Theory, eprint arXiv:hep-th/0409306
-
-
-
-
18
-
-
85086953603
-
Flux vacua and branes of the minimal superstring
-
Seiberg N., and Shih D. Flux vacua and branes of the minimal superstring. JHEP 0501 (2005) 055
-
(2005)
JHEP
, vol.501
, pp. 055
-
-
Seiberg, N.1
Shih, D.2
-
25
-
-
0003366699
-
The Schwarz function and its generalization to higher dimensions
-
Summers W.H. (Ed), A Wiley-Interscience Publication, John Wiley and Sons
-
Shapiro H. The Schwarz function and its generalization to higher dimensions. In: Summers W.H. (Ed). University of Arkansas Lecture Notes in the Mathematical Sciences vol. 9 (1992), A Wiley-Interscience Publication, John Wiley and Sons
-
(1992)
University of Arkansas Lecture Notes in the Mathematical Sciences
, vol.9
-
-
Shapiro, H.1
-
30
-
-
4043150725
-
Integrable quasiclassical deformations of algebraic curves
-
Konopelchenko B., and Martínez Alonso L. Integrable quasiclassical deformations of algebraic curves. J. Phys. A: Math. Gen. 37 (2004) 7859-7877
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
, pp. 7859-7877
-
-
Konopelchenko, B.1
Martínez Alonso, L.2
-
32
-
-
0037681409
-
Soliton equations and their algebro-geometric solutions
-
Cambridge University Press, Cambridge
-
Gesztesy F., and Holden H. Soliton equations and their algebro-geometric solutions. Cambridge Studies in Advanced Mathematics vol. 79 (2003), Cambridge University Press, Cambridge
-
(2003)
Cambridge Studies in Advanced Mathematics
, vol.79
-
-
Gesztesy, F.1
Holden, H.2
-
33
-
-
11244255582
-
Unitary and complex matrix models and 1-d type 0 strings
-
arXiv:hep-th/0309168
-
Klebanov I.R., Maldacena J., and Seiberg N. Unitary and complex matrix models and 1-d type 0 strings. Commun. Math. Phys. 252 (2004) 275-323. arXiv:hep-th/0309168
-
(2004)
Commun. Math. Phys.
, vol.252
, pp. 275-323
-
-
Klebanov, I.R.1
Maldacena, J.2
Seiberg, N.3
-
34
-
-
33244466961
-
Nonlinear Dispersive Waves
-
Whitham G.B. Nonlinear Dispersive Waves. SIAM J. Appl. Math. 14 4 (1966) 956-958
-
(1966)
SIAM J. Appl. Math.
, vol.14
, Issue.4
, pp. 956-958
-
-
Whitham, G.B.1
-
35
-
-
0012436224
-
-
Ercolani N.M., et al. (Ed), Plenum Press, New York
-
In: Ercolani N.M., et al. (Ed). Singular Limit of Dispersive Waves (1994), Plenum Press, New York
-
(1994)
Singular Limit of Dispersive Waves
-
-
-
36
-
-
33745751988
-
-
See the Appendix. C
-
-
-
-
37
-
-
33745755670
-
-
0 is often referred to as "space" in soliton theory
-
-
-
|