-
2
-
-
0041813286
-
Using schema theory to explore interactions of multiple operators
-
W. B. Langdon, et al., eds.
-
N. F. McPhee and R. Poli. Using schema theory to explore interactions of multiple operators. In W. B. Langdon, et al., eds., GECCO 2002, pp853-860.
-
GECCO 2002
, pp. 853-860
-
-
McPhee, N.F.1
Poli, R.2
-
3
-
-
33745752124
-
A probabilistic model of size drift
-
R. L. Riolo and B. Worzel, eds. Kluwer
-
J. Rosca. A probabilistic model of size drift. In R. L. Riolo and B. Worzel, eds., Genetic Programming Theory and Practice, pp119-136. Kluwer, 2003.
-
(2003)
Genetic Programming Theory and Practice
, pp. 119-136
-
-
Rosca, J.1
-
5
-
-
24944451592
-
A schema-based version of Geiringer's theorem for nonlinear genetic programming with homologous crossover
-
A. H. Wright, et al., eds., Foundations of Genetic Algorithms 8
-
B. Mitavskiy and J. E. Rowe. A schema-based version of Geiringer's theorem for nonlinear genetic programming with homologous crossover. In A. H. Wright, et al., eds., Foundations of Genetic Algorithms 8, LNCS 3469, pp156-175. 2005.
-
(2005)
LNCS
, vol.3469
, pp. 156-175
-
-
Mitavskiy, B.1
Rowe, J.E.2
-
6
-
-
14844342884
-
Visualizing tree structures in genetic programming
-
J. M. Daida, A. M. Hilss, D. J. Ward, and S. L. Long. Visualizing tree structures in genetic programming. Genetic Programming and Evolvable Machines, 6(1):79-110
-
Genetic Programming and Evolvable Machines
, vol.6
, Issue.1
, pp. 79-110
-
-
Daida, J.M.1
Hilss, A.M.2
Ward, D.J.3
Long, S.L.4
-
7
-
-
33745738877
-
Convergence rates for the distribution of program outputs
-
W. B. Langdon, et al., eds., New York, 9-13 July
-
W. B. Langdon. Convergence rates for the distribution of program outputs. In W. B. Langdon, et al., eds., GECCO 2002, pp812-819, New York, 9-13 July 2002.
-
(2002)
GECCO 2002
, pp. 812-819
-
-
Langdon, W.B.1
-
8
-
-
33745755092
-
How many good programs are there? How long are they?
-
K. A. De Jong, et al., eds., Morgan Kaufmann. Published
-
W. B. Langdon. How many good programs are there? How long are they? In K. A. De Jong, et al., eds., FOGA 7, pp183-202, Morgan Kaufmann. Published 2003.
-
(2003)
FOGA
, vol.7
, pp. 183-202
-
-
Langdon, W.B.1
-
9
-
-
24644519995
-
The distribution of reversible functions is normal
-
Kluwer
-
W. B. Langdon. The distribution of reversible functions is Normal. In Genetic Programming Theory and Practise, pp173-188. Kluwer, 2003.
-
(2003)
Genetic Programming Theory and Practise
, pp. 173-188
-
-
Langdon, W.B.1
-
10
-
-
21344455321
-
Convergence of program fitness landscapes
-
E. Cantú-Paz, et al., eds., GECCO 2003. Springer-Verlag
-
W. B. Langdon. Convergence of program fitness landscapes. In E. Cantú-Paz, et al., eds., GECCO 2003, LNCS 2724, pp1702-1714. Springer-Verlag.
-
LNCS
, vol.2724
, pp. 1702-1714
-
-
Langdon, W.B.1
-
12
-
-
0042815112
-
Quadratic bloat in genetic programming
-
D. Whitley, et al., eds.
-
W. B. Langdon. Quadratic bloat in genetic programming. In D. Whitley, et al., eds., GECCO 2000, pp451-458.
-
GECCO 2000
, pp. 451-458
-
-
Langdon, W.B.1
-
13
-
-
33745745465
-
On turing complete T7 and MISC F-4 program fitness landscapes
-
University of Essex, UK
-
W. B. Langdon and R. Poli. On Turing complete T7 and MISC F-4 program fitness landscapes. Technical Report CSM-445, University of Essex, UK, 2005.
-
(2005)
Technical Report
, vol.CSM-445
-
-
Langdon, W.B.1
Poli, R.2
-
15
-
-
33745755380
-
An algebraic equation for the halting probability
-
R. Herken, ed. OUP
-
G. J. Chaitin. An algebraic equation for the halting probability. In R. Herken, ed., The Universal Turing Machine A Half-Century Survey, pp279-283. OUP, 1988.
-
(1988)
The Universal Turing Machine a Half-century Survey
, pp. 279-283
-
-
Chaitin, G.J.1
|