-
1
-
-
18244424161
-
"Near-field effects in spatial coherence of thermal sources"
-
R. Carminati and J.-J. Greffet, "Near-field effects in spatial coherence of thermal sources," Phys. Rev. Lett. 82, 1660-1663 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 1660-1663
-
-
Carminati, R.1
Greffet, J.-J.2
-
2
-
-
0034517470
-
"Spatial coherence of thermal near fields"
-
C. Henkel, K. Joulain, R. Carminati, and J.-J. Greffet, "Spatial coherence of thermal near fields," Opt. Commun. 186, 57-67 (2000).
-
(2000)
Opt. Commun.
, vol.186
, pp. 57-67
-
-
Henkel, C.1
Joulain, K.2
Carminati, R.3
Greffet, J.-J.4
-
3
-
-
0034250508
-
"Near-field spectral effects due to electromagnetic surface excitations"
-
A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1548-1551
-
-
Shchegrov, A.V.1
Joulain, K.2
Carminati, R.3
Greffet, J.-J.4
-
4
-
-
0037171215
-
"Degree of polarization in near fields of thermal sources: Effects of surface waves"
-
T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 123902
-
-
Setälä, T.1
Kaivola, M.2
Friberg, A.T.3
-
5
-
-
0042839565
-
"Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders"
-
S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68, 045415 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 045415
-
-
Gray, S.K.1
Kupka, T.2
-
6
-
-
0035893434
-
"Plasmon resonances of silver nanowires with a nonregular cross section"
-
J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Shultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 235402
-
-
Kottmann, J.P.1
Martin, O.J.F.2
Smith, D.R.3
Shultz, S.4
-
7
-
-
0001328569
-
"Plasmon resonant coupling in metallic nanowires"
-
J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
-
(2001)
Opt. Express
, vol.8
, pp. 655-663
-
-
Kottmann, J.P.1
Martin, O.J.F.2
-
8
-
-
0141886076
-
"Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles"
-
C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles," J. Opt. Soc. Am. A 20, 1969-1973 (2003).
-
(2003)
J. Opt. Soc. Am. A
, vol.20
, pp. 1969-1973
-
-
Rockstuhl, C.1
Salt, M.G.2
Herzig, H.P.3
-
9
-
-
4544227321
-
"Analyzing the scattering properties of coupled metallic nanoparticles"
-
C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A 21, 1761-1768 (2004).
-
(2004)
J. Opt. Soc. Am. A
, vol.21
, pp. 1761-1768
-
-
Rockstuhl, C.1
Salt, M.G.2
Herzig, H.P.3
-
10
-
-
0001557535
-
"Electromagnetic energy transport via linear chains of silver nanoparticles"
-
M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
-
(1998)
Opt. Lett.
, vol.23
, pp. 1331-1333
-
-
Quinten, M.1
Leitner, A.2
Krenn, J.R.3
Aussenegg, F.R.4
-
11
-
-
18344378820
-
"Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles"
-
J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 2590-2593
-
-
Krenn, J.R.1
Dereux, A.2
Weeber, J.C.3
Bourillot, E.4
Lacroute, Y.5
Goudonnet, J.P.6
Schider, G.7
Gotschy, W.8
Leitner, A.9
Aussenegg, F.R.10
Girard, C.11
-
12
-
-
0034670778
-
"Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit"
-
M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
-
(2000)
Phys. Rev. B
, vol.62
-
-
Brongersma, M.L.1
Hartman, J.W.2
Atwater, H.A.3
-
13
-
-
0037092841
-
"Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy"
-
S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 193408
-
-
Maier, S.A.1
Brongersma, M.L.2
Kik, P.G.3
Atwater, H.A.4
-
14
-
-
11244319440
-
"Near-field optical transmittance of metal particle chain waveguides"
-
C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 6141-6146
-
-
Girard, C.1
Quidant, R.2
-
15
-
-
0000796107
-
"Plasmon polaritons of metallic nanowires for controlling submicron propagation of light"
-
J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 9061-9068
-
-
Weeber, J.-C.1
Dereux, A.2
Girard, C.3
Krenn, J.R.4
Goudonnet, J.-P.5
-
16
-
-
0035886195
-
"Optical properties of Ag and Au nanowire gratings"
-
G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
-
(2001)
J. Appl. Phys.
, vol.90
, pp. 3825-3830
-
-
Schider, G.1
Krenn, J.R.2
Gotschy, W.3
Lamprecht, B.4
Ditlbacher, H.5
Leitner, A.6
Aussenegg, F.R.7
-
17
-
-
12944315788
-
"Plasmon dispersion relation of Au and Ag nanowires"
-
G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 155427
-
-
Schider, G.1
Krenn, J.R.2
Hohenau, A.3
Ditlbacher, H.4
Leitner, A.5
Aussenegg, F.R.6
Schaich, W.L.7
Puscasu, I.8
Monacelli, B.9
Boreman, G.10
-
18
-
-
1242331549
-
"Degree of coherence for electromagnetic fields"
-
J. Tervo, T. Setälä, and A. T. Friberg, "Degree of coherence for electromagnetic fields," Opt. Express 11, 1137-1143 (2003).
-
(2003)
Opt. Express
, vol.11
, pp. 1137-1143
-
-
Tervo, J.1
Setälä, T.2
Friberg, A.T.3
-
19
-
-
8744301961
-
"Theory of partially coherent electromagnetic fields in the space-frequency domain"
-
J. Tervo, T. Setälä, and A. T. Friberg, "Theory of partially coherent electromagnetic fields in the space-frequency domain," J. Opt. Soc. Am. A 21, 2205-2215 (2004).
-
(2004)
J. Opt. Soc. Am. A
, vol.21
, pp. 2205-2215
-
-
Tervo, J.1
Setälä, T.2
Friberg, A.T.3
-
20
-
-
33748681925
-
"Degree of polarization for optical near fields"
-
T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, "Degree of polarization for optical near fields," Phys. Rev. Lett. 66, 016615 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.66
, pp. 016615
-
-
Setälä, T.1
Shevchenko, A.2
Kaivola, M.3
Friberg, A.T.4
-
22
-
-
0037607872
-
"Scattering of partially coherent electromagnetic fields by microstructured media"
-
J. Huttunen, A. T. Friberg, and J. Turunen, "Scattering of partially coherent electromagnetic fields by microstructured media," Phys. Rev. E 52, 3081-3092 (1995).
-
(1995)
Phys. Rev. E
, vol.52
, pp. 3081-3092
-
-
Huttunen, J.1
Friberg, A.T.2
Turunen, J.3
-
23
-
-
0000864338
-
"Boundary-element method for the calculation of electronic states in semiconductor nanostructures"
-
P. A. Knipp and T. L. Reinecke, "Boundary-element method for the calculation of electronic states in semiconductor nanostructures," Phys. Rev. B 54, 1880-1891 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 1880-1891
-
-
Knipp, P.A.1
Reinecke, T.L.2
-
24
-
-
0001418102
-
"Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: Theory for the reflection photon scanning tunneling microscope"
-
A. Madrazo and M. Nieto-Vesperinas, "Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope," J. Opt. Soc. Am. A 13, 785-795 (1996).
-
(1996)
J. Opt. Soc. Am. A
, vol.13
, pp. 785-795
-
-
Madrazo, A.1
Nieto-Vesperinas, M.2
-
25
-
-
0037242188
-
"Boundary element method for resonances in dielectric microcavities"
-
J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A, Pure Appl. Opt. 5, 53-60 (2003).
-
(2003)
J. Opt. A, Pure Appl. Opt.
, vol.5
, pp. 53-60
-
-
Wiersig, J.1
-
27
-
-
34547217759
-
"Optical constants of noble metals"
-
P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972).
-
(1972)
Phys. Rev. B
, vol.6
, pp. 4370-4379
-
-
Johnson, P.B.1
Christy, R.W.2
-
28
-
-
84894014855
-
-
note
-
It is of interest to note that, unlike in the traditional description of the partial polarization of a plane wave, the electric and magnetic vectors in the present TM-polarized electromagnetic case behave differently. More specifically, since the magnetic field has only a single component Hz, one intuitively would characterize the magnetic field as fully polarized. Indeed, the magnetic cross-spectral density tensor W(h) at any point r contains only the element Wzz(h), and calculation of the degree of polarization for the magnetic field from Eq. (12), with W(e) replaced by W(h), readily gives P3(h) = 1. The electric field vector, on the other hand, has both x and y components, and its cross-spectral density tensor at every point is a 2 × 2 matrix consisting of Wxx(e), Wxy(e), Wyx(e), and Wyy(e). For an electric field of this form, it has been shown 20 that the 3D degree of polarization takes on values 1/2 ≤ P3(e) ≤ 1.
-
-
-
|