-
1
-
-
0002555497
-
The number of independent sets in the grid graph
-
N. Calkin and H. Wilf. The number of independent sets in the grid graph. SIAM J. Discrete Math., 11:54-60, 1998.
-
(1998)
SIAM J. Discrete Math.
, vol.11
, pp. 54-60
-
-
Calkin, N.1
Wilf, H.2
-
2
-
-
2442545253
-
Improved bitstuffing bounds on two-dimensional constraints
-
May
-
S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf. Improved bitstuffing bounds on two-dimensional constraints. IEEE Trans. on Inform. Theory, 50(5):824-838, May 2004.
-
(2004)
IEEE Trans. on Inform. Theory
, vol.50
, Issue.5
, pp. 824-838
-
-
Halevy, S.1
Chen, J.2
Roth, R.M.3
Siegel, P.H.4
Wolf, J.K.5
-
3
-
-
0005018319
-
Zero capacity region of multidimensional run length constraints
-
H. Ito, A. Kato, Z. Nagy, and K. Zeger. Zero capacity region of multidimensional run length constraints. Elec. J. of Comb., 6, 1999.
-
(1999)
Elec. J. of Comb.
, vol.6
-
-
Ito, H.1
Kato, A.2
Nagy, Z.3
Zeger, K.4
-
4
-
-
84990712091
-
Poisson approximation for large deviations
-
S. Janson. Poisson approximation for large deviations. Random Structures and Algorithms, 1:221-230, 1990.
-
(1990)
Random Structures and Algorithms
, vol.1
, pp. 221-230
-
-
Janson, S.1
-
5
-
-
0032640330
-
On the capacity of two-dimensional run-length constrained channels
-
July
-
A. Kato and K. Zeger. On the capacity of two-dimensional run-length constrained channels. IEEE Trans. on Inform. Theory, 45:1527-1540, July 1999.
-
(1999)
IEEE Trans. on Inform. Theory
, vol.45
, pp. 1527-1540
-
-
Kato, A.1
Zeger, K.2
-
6
-
-
0040935488
-
Families of non-disjoint subsets
-
D. J. Kleitman. Families of non-disjoint subsets. J. Combin. Theory, 1:153-155, 1966.
-
(1966)
J. Combin. Theory
, vol.1
, pp. 153-155
-
-
Kleitman, D.J.1
-
8
-
-
0001926796
-
-
V. S. Pless and W. C. Huffman (Editors), Elsevier, Amsterdam
-
Brian H. Marcus, Ron M. Roth, and Paul H. Siegel. Constrained systems and coding for recording channels. V. S. Pless and W. C. Huffman (Editors), Elsevier, Amsterdam, 1998.
-
(1998)
Constrained Systems and Coding for Recording Channels
-
-
Marcus, B.H.1
Roth, R.M.2
Siegel, P.H.3
-
9
-
-
0034188625
-
Capacity bounds for the three-dimensional (0, 1) run length limited channel
-
May
-
Zsigmond Nagy and Kenneth Zeger. Capacity bounds for the three-dimensional (0, 1) run length limited channel. IEEE Trans. on Inform. Theory, 46(3):1030-1033, May 2000.
-
(2000)
IEEE Trans. on Inform. Theory
, vol.46
, Issue.3
, pp. 1030-1033
-
-
Nagy, Z.1
Zeger, K.2
-
10
-
-
84856043672
-
A mathematical theory of communication
-
July
-
C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, July 1948.
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
11
-
-
84856043672
-
A mathematical theory of communication
-
October
-
C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:623-656, October 1948.
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 623-656
-
-
Shannon, C.E.1
-
12
-
-
24544433837
-
-
M.Sc. thesis, Computer Science Dep., Technion - Israel Institute of Technology, Haifa, Israel. (in Hebrew)
-
R. Talyansky, Coding for two-dimensional constraints. M.Sc. thesis, Computer Science Dep., Technion - Israel Institute of Technology, Haifa, Israel, 1997. (in Hebrew).
-
(1997)
Coding for Two-dimensional Constraints
-
-
Talyansky, R.1
|