-
1
-
-
85023916710
-
Volume Computation for Polytopes and Partition Functions for Classical Root Systems
-
arXiv: math. CO/0504231
-
M. W. Baldoni, M. Beck, C. Cochet, and M. Vergne. “Volume Computation for Polytopes and Partition Functions for Classical Root Systems.” To appear in Discrete Comp. Geom., arXiv: math. CO/0504231 (2005).
-
(2005)
To Appear in Discrete Comp. Geom
-
-
Baldoni, M.W.1
Beck, M.2
Cochet, C.3
Vergne, M.4
-
2
-
-
0000975439
-
A Polynomial Time Algorithm for Counting Integral Points in Polyhedra When the Dimension is Fixed
-
A. I. Barvinok. “A Polynomial Time Algorithm for Counting Integral Points in Polyhedra When the Dimension is Fixed.” Math. Oper. Res. 19: 4 (1994), 769–779.
-
(1994)
Math. Oper. Res.
, vol.19
, Issue.4
, pp. 769-779
-
-
Barvinok, A.I.1
-
4
-
-
0005186432
-
Involutions on Gel _ fand–Tsetlin Schemes and Multiplicities in Skew GLn-modules
-
A. D. Berenstein and A. V. Zelevinsky. “Involutions on Gel _ fand–Tsetlin Schemes and Multiplicities in Skew GLn-modules.” Dokl. Akad. Nauk SSSR 300: 6 (1988), 1291–1294.
-
(1988)
Dokl. Akad. Nauk SSSR
, vol.300
, Issue.6
, pp. 1291-1294
-
-
Berenstein, A.D.1
Zelevinsky, A.V.2
-
5
-
-
0000764591
-
Tensor Product Multiplicities and Convex Polytopes in Partition Space
-
A. D. Berenstein and A. V. Zelevinsky. “Tensor Product Multiplicities and Convex Polytopes in Partition Space.” J. Geom. Phys. 5: 3 (1988), 453–472.
-
(1988)
J. Geom. Phys.
, vol.5
, Issue.3
, pp. 453-472
-
-
Berenstein, A.D.1
Zelevinsky, A.V.2
-
6
-
-
0035585392
-
Tensor Product Multiplicities, Canonical Bases and Totally Positive Varieties
-
A. D. Berenstein and A. V. Zelevinsky. “Tensor Product Multiplicities, Canonical Bases and Totally Positive Varieties.” Invent. Math. 143: 1 (2001), 77–128.
-
(2001)
Invent. Math.
, vol.143
, Issue.1
, pp. 77-128
-
-
Berenstein, A.D.1
Zelevinsky, A.V.2
-
7
-
-
0002438119
-
The Saturation Conjecture (After A. Knutson and T. Tao)
-
A. S. Buch. “The Saturation Conjecture (after A. Knutson and T. Tao).” Enseign. Math. (2) 46: 1-2 (2000), 43–60.
-
(2000)
Enseign. Math. (2)
, vol.46
, Issue.1-2
, pp. 43-60
-
-
Buch, A.S.1
-
9
-
-
0030564733
-
Lie Algebraic Computation
-
A. M. Cohen and W. A. de Graaf. “Lie Algebraic Computation.” Comput. Phys. Comm. 97: 1-2 (1996), 53–62.
-
(1996)
Comput. Phys. Comm
, vol.97
, Issue.1-2
, pp. 53-62
-
-
Cohen, A.M.1
De Graaf, W.A.2
-
10
-
-
4744348024
-
-
J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, J. Tauzer, and R. Yoshida. “A User’s Guide for LattE v.1.1.” Software and manual available at http://www.math.ucdavis.edu/∼latte, 2003.
-
(2003)
A Users Guide for Latte V.1.1
-
-
De Loera, J.A.1
Haws, D.2
Hemmecke, R.3
Huggins, P.4
Tauzer, J.5
Yoshida, R.6
-
11
-
-
4344582797
-
Effective Lattice Point Counting in Rational Convex Polytopes
-
J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. “Effective Lattice Point Counting in Rational Convex Polytopes.” J. Symbolic Comput. 38: 4 (2004), 1273–1302.
-
(2004)
J. Symbolic Comput.
, vol.38
, Issue.4
, pp. 1273-1302
-
-
De Loera, J.A.1
Hemmecke, R.2
Tauzer, J.3
Yoshida, R.4
-
12
-
-
0037107150
-
On the Littlewood–Richardson Polynomials
-
H. Derksen and J. Weyman. “On the Littlewood–Richardson Polynomials.” J. Algebra 255: 2 (2002), 247–257.
-
(2002)
J. Algebra
, vol.255
, Issue.2
, pp. 247-257
-
-
Derksen, H.1
Weyman, J.2
-
13
-
-
4344650688
-
Polynômes arithmétiques et méthode des polyèdres en combinatoire
-
Basel: Birkh¨auser Verlag
-
E. Ehrhart. Polynômes arithmétiques et méthode des polyèdres en combinatoire. International Series of Numerical Mathematics, 35. Basel: Birkh¨auser Verlag, 1977.
-
(1977)
International Series of Numerical Mathematics
, vol.35
-
-
Ehrhart, E.1
-
16
-
-
0000834650
-
Finite-Dimensional Representations of the Group of Unimodular Matrices
-
I. M. Gelfand and M. L. Tsetlin. “Finite-Dimensional Representations of the Group of Unimodular Matrices.” Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825–828.
-
(1950)
Doklady Akad. Nauk SSSR (N.S.)
, vol.71
, pp. 825-828
-
-
Gelfand, I.M.1
Tsetlin, M.L.2
-
17
-
-
0003198090
-
Introduction to Lie Algebras and Representation Theory
-
New York: Springer-Verlag
-
J. E. Humphreys. Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9. New York: Springer-Verlag, 1972.
-
(1972)
Graduate Texts in Mathematics
, vol.9
-
-
Humphreys, J.E.1
-
20
-
-
85023908304
-
A Path Model for Geodesics in Euclidean Buildings and Its Applications to Representation Theory
-
arXiv: math. RT/0411182
-
M. Kapovich and J. J. Millson. “A Path Model for Geodesics in Euclidean Buildings and Its Applications to Representation Theory.” To appear in Mem. Amer. Math. Soc., arXiv: math. RT/0411182 (2004).
-
(2004)
To Appear in Mem. Amer. Math. Soc
-
-
Kapovich, M.1
Millson, J.J.2
-
21
-
-
34249963938
-
Crystalizing the q-Analogue of Universal Enveloping Algebras
-
M. Kashiwara. “Crystalizing the q-Analogue of Universal Enveloping Algebras.” Comm. Math. Phys. 133: 2 (1990), 249–260.
-
(1990)
Comm. Math. Phys.
, vol.133
, Issue.2
, pp. 249-260
-
-
Kashiwara, M.1
-
22
-
-
12144264589
-
Stretched Littlewood–Richardson and Kostka Coefficients
-
Providence: Amer. Math. Soc
-
R. C. King, C. Tollu, and F. Toumazet. “Stretched Littlewood–Richardson and Kostka Coefficients.” In Symmetry in Physics, CRM Proc. Lecture Notes, 34, pp. 99–112. Providence: Amer. Math. Soc., 2004.
-
(2004)
Symmetry in Physics, CRM Proc. Lecture Notes
, vol.34
, pp. 99-112
-
-
King, R.C.1
Tollu, C.2
Toumazet, F.3
-
23
-
-
3242741349
-
Ubiquity of Kostka Polynomials
-
River Edge, NJ: World Sci. Publishing
-
A. N. Kirillov. “Ubiquity of Kostka Polynomials.” In Physics and Combinatorics 1999 (Nagoya), pp. 85–200. River Edge, NJ: World Sci. Publishing, 2001.
-
(2001)
Physics and Combinatorics 1999 (Nagoya)
, pp. 85-200
-
-
Kirillov, A.N.1
-
25
-
-
0033423661
-
n(C) Tensor Products I: Proof of the Saturation Conjecture
-
n(C) Tensor Products I: Proof of the Saturation Conjecture.” J. Amer. Math. Soc. 12: 4 (1999), 1055–1090.
-
(1999)
J. Amer. Math. Soc.
, vol.12
, Issue.4
, pp. 1055-1090
-
-
Knutson, A.1
Tao, T.2
-
26
-
-
5344237452
-
A Positive Proof of the Littlewood–Richardson Rule Using the Octahedron Recurrence
-
Research paper 61, 18 pp
-
A. Knutson, T. Tao, and C. Woodward. “A Positive Proof of the Littlewood–Richardson Rule Using the Octahedron Recurrence.” Electron. J. Combin. 11 (2004), Research paper 61, 18 pp.
-
(2004)
Electron. J. Combin
, vol.11
-
-
Knutson, A.1
Tao, T.2
Woodward, C.3
-
27
-
-
0040045793
-
LIE, A Software Package for Lie Group Computations
-
M. A. A. van Leeuwen. “LIE, A Software Package for Lie Group Computations.” Euromath Bull. 1: 2 (1994) 83–94. Software and manual available at http: //wwwmathlabo.univ-poitiers.fr/∼maavl/LiE/.
-
(1994)
Euromath Bull
, vol.1
, Issue.2
, pp. 83-94
-
-
Van Leeuwen, M.A.A.1
-
28
-
-
0041177574
-
Cones, Crystals, and Patterns
-
P. Littelmann. “Cones, Crystals, and Patterns.” Transform. Groups 3: 2 (1998), 145–179.
-
(1998)
Transform. Groups
, vol.3
, Issue.2
, pp. 145-179
-
-
Littelmann, P.1
-
29
-
-
85023924194
-
-
Maplesoft. “Maple.” Available at http: //www. maplesoft.com/.
-
Maple
-
-
-
30
-
-
33745678445
-
Geometric Complexity Theory, P vs. NP and Explicit Obstructions
-
New Delhi: Hindustan Book Agency
-
K. Mulmuley and M. Sohoni. “Geometric Complexity Theory, P vs. NP and Explicit Obstructions.” In Advances in Algebra and Geometry (Hyderabad, 2001), pp. 239–261. New Delhi: Hindustan Book Agency, 2003.
-
(2003)
Advances in Algebra and Geometry (Hyderabad, 2001)
, pp. 239-261
-
-
Mulmuley, K.1
Sohoni, M.2
-
31
-
-
85039340200
-
The Computation of Kostka Numbers and Littlewood–Richardson Coefficients is #P-complete
-
arXiv: math. CO/0501176
-
H. Narayanan. “The Computation of Kostka Numbers and Littlewood–Richardson Coefficients is #P-complete.” To appear in J. Algebraic Combin., arXiv: math. CO/0501176 (2005).
-
(2005)
To Appear in J. Algebraic Combin
-
-
Narayanan, H.1
-
32
-
-
14644406886
-
Combinatorics and Geometry of Littlewood–Richardson Cones
-
I. Pak and E. Vallejo. “Combinatorics and Geometry of Littlewood–Richardson Cones.” Europ. J. Combinatorics. 26 (2005), 995–1008.
-
(2005)
Europ. J. Combinatorics.
, vol.26
, pp. 995-1008
-
-
Pak, I.1
Vallejo, E.2
-
33
-
-
4644258912
-
TOPCOM: Triangulations of Point Configurations and Oriented Matroids
-
River Edge, NJ: World Sci. Publishing, 2002
-
J. Rambau. “TOPCOM: Triangulations of Point Configurations and Oriented Matroids.” In Mathematical Software (Beijing, 2002), pages 330–340. River Edge, NJ: World Sci. Publishing, 2002. Software available at http: //www.zib.de/rambau/TOPCOM/.
-
Mathematical Software (Beijing, 2002)
, pp. 330-340
-
-
Rambau, J.1
-
35
-
-
0003200154
-
Some Combinatorial Aspects of the Schubert Calculus
-
Berlin: Springer
-
R. P. Stanley. “Some Combinatorial Aspects of the Schubert Calculus.” In Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), pp. 217–251. Lecture Notes in Math., 579. Berlin: Springer, 1977.
-
(1977)
Combinatoire Et représentation Du Groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976)
, vol.579
, pp. 217-251
-
-
Stanley, R.P.1
-
36
-
-
0001858769
-
Enumerative Combinatorics
-
Cambridge: Cambridge University Press
-
R. P. Stanley. Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics, 49. Cambridge: Cambridge University Press, 1997.
-
(1997)
Cambridge Studies in Advanced Mathematics
, vol.49
-
-
Stanley, R.P.1
-
37
-
-
0003279650
-
Enumerative Combinatorics
-
Cambridge: Cambridge University Press
-
R. P. Stanley. Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62. Cambridge: Cambridge University Press, 1999.
-
(1999)
Cambridge Studies in Advanced Mathematics
, vol.2
-
-
Stanley, R.P.1
-
39
-
-
3242727987
-
Computational Aspects of Root Systems, Coxeter Groups, and Weyl Characters
-
Tokyo: Math. Soc. Japan
-
J. R. Stembridge. “Computational Aspects of Root Systems, Coxeter Groups, and Weyl Characters.” In Interaction of Combinatorics and Representation Theory, MSJ Mem., 11, pp. 1–38. Tokyo: Math. Soc. Japan, 2001.
-
(2001)
Interaction of Combinatorics and Representation Theory, MSJ Mem
, vol.11
, pp. 1-38
-
-
Stembridge, J.R.1
-
40
-
-
0037609023
-
On Vector Partition Functions
-
B. Sturmfels. “On Vector Partition Functions.” J. Combin. Theory Ser. A 72: 2 (1995), 302–309.
-
(1995)
J. Combin. Theory Ser. A
, vol.72
, Issue.2
, pp. 302-309
-
-
Sturmfels, B.1
-
41
-
-
33745646252
-
The Littlewood– Richardson Rule—The Cornerstone for Computing Group Properties
-
Warsaw: PWN
-
B. G. Wybourne. “The Littlewood– Richardson Rule—The Cornerstone for Computing Group Properties.” In Topics in Algebra, Part 2 (Warsaw, 1988), Banach Center Publ., 26, pages 475–482. Warsaw: PWN, 1990.
-
(1990)
Topics in Algebra, Part 2 (Warsaw, 1988), Banach Center Publ
, vol.26
, pp. 475-482
-
-
Wybourne, B.G.1
|