-
1
-
-
34250286595
-
On a trace functional for formal pseudo-differential operators and the sympletic structure of the Korteweg-de Vries type equations
-
Adler, M.: On a trace functional for formal pseudo-differential operators and the sympletic structure of the Korteweg-de Vries type equations. Invent. Math. 50, 219-248 (1979)
-
(1979)
Invent. Math.
, vol.50
, pp. 219-248
-
-
Adler, M.1
-
2
-
-
33745630017
-
Connes' trace formula and Dirac realization of Maxwell and Yang-Mills action, noncommutative geometry and the standard model of elementary particle physics
-
Hesselberg, Springer, Berlin Heidelberg New York
-
Alberti, P.M., Matthes, R.: Connes' trace formula and Dirac realization of Maxwell and Yang-Mills action, noncommutative geometry and the standard model of elementary particle physics (Hesselberg, 1999), pp. 40-74, Lecture Notes in Physics, vol. 596, Springer, Berlin Heidelberg New York
-
(1999)
Lecture Notes in Physics
, vol.596
, pp. 40-74
-
-
Alberti, P.M.1
Matthes, R.2
-
3
-
-
20444413413
-
The action functinal in noncommutative geometry
-
Connes, A.: The action functinal in noncommutative geometry. Commun. Math. Phys. 117, 673-683 (1998)
-
(1998)
Commun. Math. Phys.
, vol.117
, pp. 673-683
-
-
Connes, A.1
-
4
-
-
27744460401
-
Quantized calculus and applications
-
Internat Press, Cambridge, MA
-
Connes, A.: Quantized calculus and applications. In: Proceedings of the XIth international congress of mathematical physics (Paris, 1994), pp. 15-36, Internat Press, Cambridge, MA (1995)
-
(1995)
Proceedings of the XIth International Congress of Mathematical Physics (Paris, 1994)
, pp. 15-36
-
-
Connes, A.1
-
5
-
-
0030602128
-
The noncommutative residue for manifolds with boundary
-
Fedosov, B.V., Golse, F., Leichtnam, E., Schrohe, E.: The noncommutative residue for manifolds with boundary. J. Funct. Anal. 142, 1-31 (1996)
-
(1996)
J. Funct. Anal.
, vol.142
, pp. 1-31
-
-
Fedosov, B.V.1
Golse, F.2
Leichtnam, E.3
Schrohe, E.4
-
6
-
-
0000028732
-
A new proof of Weyl's formula on the asymptotic distribution of eigenvalues
-
Guillemin, V.W.: A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Adv. Math. 55(2), 131-160 (1985)
-
(1985)
Adv. Math.
, vol.55
, Issue.2
, pp. 131-160
-
-
Guillemin, V.W.1
-
7
-
-
0001284725
-
The Dirac operator and gravitation
-
Kastler, D.: The Dirac operator and gravitation. Commun. Math. Phys. 166, 633-643 (1995)
-
(1995)
Commun. Math. Phys.
, vol.166
, pp. 633-643
-
-
Kastler, D.1
-
8
-
-
0001433377
-
Gravity, non-commutative geometry, and the Wodzicki residue
-
Kalau, W., Walze, M.: Gravity, non-commutative geometry, and the Wodzicki residue. J. Geom. Phys. 16, 327-344 (1995)
-
(1995)
J. Geom. Phys.
, vol.16
, pp. 327-344
-
-
Kalau, W.1
Walze, M.2
-
9
-
-
0002379151
-
Algebraic aspects of nonlinear differential equations
-
Manin, Yu. I.: Algebraic aspects of nonlinear differential equations. J. Sov. Math. 11, 1-22 (1979)
-
(1979)
J. Sov. Math.
, vol.11
, pp. 1-22
-
-
Manin, Yu.I.1
-
10
-
-
33745618074
-
Noncommutative residue, Dixmier's trace, and heat trace expansions on manifolds with boundary
-
Schrohe, E.: Noncommutative residue, Dixmier's trace, and heat trace expansions on manifolds with boundary. Contemp. Math. 242, 161-186 (1999)
-
(1999)
Contemp. Math.
, vol.242
, pp. 161-186
-
-
Schrohe, E.1
-
13
-
-
27744568970
-
Differential forms and the Wodzicki residue for manifolds with boundary
-
in press
-
Wang, Y.: Differential forms and the Wodzicki residue for manifolds with boundary. J. Geom. Phys. (in press) online: www.sciencedirect.com
-
J. Geom. Phys.
-
-
Wang, Y.1
-
14
-
-
0002794818
-
Local invariants of spectral asymmetry
-
Wodzicki, M.: Local invariants of spectral asymmetry. Invent. Math. 75(1), 143-178 (1984)
-
(1984)
Invent. Math.
, vol.75
, Issue.1
, pp. 143-178
-
-
Wodzicki, M.1
|