메뉴 건너뛰기




Volumn 3, Issue 3, 2006, Pages 333-343

Bioinformatics and data mining in proteomics

Author keywords

Bioinformatics; Cancer; Classification; Clustering; Data mining; Infectious disease; Proteomics

Indexed keywords

PROTEOME;

EID: 33745582911     PISSN: 14789450     EISSN: 17448387     Source Type: Journal    
DOI: 10.1586/14789450.3.3.333     Document Type: Review
Times cited : (41)

References (46)
  • 1
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 422, 198-207 (2003).
    • (2003) Nature , vol.422 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 2
    • 3242665953 scopus 로고    scopus 로고
    • Cancer proteomics: Serum diagnostics for tumor marker discovery
    • Rai AJ, Chan DW. Cancer proteomics: serum diagnostics for tumor marker discovery. Ann. NY Acad. Sci. 1022, 286-294 (2004).
    • (2004) Ann. NY Acad. Sci. , vol.1022 , pp. 286-294
    • Rai, A.J.1    Chan, D.W.2
  • 3
    • 17244372264 scopus 로고    scopus 로고
    • Recent advances in 2D electrophoresis: An array of possibilities
    • Van den Bergh G, Arckens L. Recent advances in 2D electrophoresis: an array of possibilities. Expert Rev. Proteomics 2, 243-252 (2005).
    • (2005) Expert Rev. Proteomics , vol.2 , pp. 243-252
    • Van Den Bergh, G.1    Arckens, L.2
  • 4
    • 23944524351 scopus 로고    scopus 로고
    • MALDI mass spectrometry for direct tissue analysis: A new tool for biomarker discovery
    • Reyzer ML, Caprioli RM. MALDI mass spectrometry for direct tissue analysis: a new tool for biomarker discovery. J. Proteome Res. 4, 1138-11342 (2005).
    • (2005) J. Proteome Res. , vol.4 , pp. 1138-11342
    • Reyzer, M.L.1    Caprioli, R.M.2
  • 5
    • 0036855519 scopus 로고    scopus 로고
    • SELDI proteinchip MS: A platform for biomarker discovery and cancer diagnosis
    • Wright GL Jr. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev. Mol. Diagn. 2, 549-63 (2002).
    • (2002) Expert Rev. Mol. Diagn. , vol.2 , pp. 549-563
    • Wright Jr., G.L.1
  • 6
    • 33645564736 scopus 로고    scopus 로고
    • Principles and applications of multidimensional protein identification technology
    • Paoletti AC, Zybailov B, Washburn MP. Principles and applications of multidimensional protein identification technology. Expert Rev. Proteomics 3, 275-82 (2004).
    • (2004) Expert Rev. Proteomics , vol.3 , pp. 275-282
    • Paoletti, A.C.1    Zybailov, B.2    Washburn, M.P.3
  • 7
    • 0036749037 scopus 로고    scopus 로고
    • Continuous sample deposition from reversed-phase liquid chromatography to tracks on a matrix-assisted laser desorption/ionization precoated target for the analysis of protein digests
    • Wall DB, Berger SJ, Finch JW et al. Continuous sample deposition from reversed-phase liquid chromatography to tracks on a matrix-assisted laser desorption/ionization precoated target for the analysis of protein digests. Electrophoresis 23, 3193-3204 (2002).
    • (2002) Electrophoresis , vol.23 , pp. 3193-3204
    • Wall, D.B.1    Berger, S.J.2    Finch, J.W.3
  • 8
    • 0347362472 scopus 로고    scopus 로고
    • Postgenomics: Proteomics and bioinformatics in cancer research
    • Bensmail H, Haoudi A. Postgenomics: proteomics and bioinformatics in cancer research. J. Biomed. Biotechnol. 4, 217-230 (2003). Summary of different proteomics and bioinformatics approaches for clustering and classification.
    • (2003) J. Biomed. Biotechnol. , vol.4 , pp. 217-230
    • Bensmail, H.1    Haoudi, A.2
  • 9
    • 19544367642 scopus 로고    scopus 로고
    • A novel approach for clustering proteomics data using Bayesian fast Fourier transform
    • Bensmail H, Golek J, Moody MM, Semmes OJ, Haoudi A. A novel approach for clustering proteomics data using Bayesian fast Fourier transform. Bioinformatics 21, 2210-2224 (2005). Discusses the use of a combined method of bioinformatics and engineering to denoise and cluster high-dimensional proteomics data.
    • (2005) Bioinformatics , vol.21 , pp. 2210-2224
    • Bensmail, H.1    Golek, J.2    Moody, M.M.3    Semmes, O.J.4    Haoudi, A.5
  • 10
    • 27744537866 scopus 로고    scopus 로고
    • Functional clustering algorithm for high-dimensional proteomics data
    • Bensmail H, Aruna B, Semmes OJ, Haoudi A. Functional clustering algorithm for high-dimensional proteomics data. J. Biomed. Biotechnol. 2005, 80-86 (2005).
    • (2005) J. Biomed. Biotechnol. , vol.2005 , pp. 80-86
    • Bensmail, H.1    Aruna, B.2    Semmes, O.J.3    Haoudi, A.4
  • 11
    • 0141520575 scopus 로고    scopus 로고
    • Generalizable mass spectrometry mining used to identify disease state biomarkers from blood serum
    • Neville P, Tan P-Y, Mann G, Wolfinger R. Generalizable mass spectrometry mining used to identify disease state biomarkers from blood serum. Proteomics 3, 1710-1715 (2003).
    • (2003) Proteomics , vol.3 , pp. 1710-1715
    • Neville, P.1    Tan, P.-Y.2    Mann, G.3    Wolfinger, R.4
  • 14
    • 1842559788 scopus 로고    scopus 로고
    • Reproducibility of SELDI-TOF protein patterns in serum: Comparing datasets from different experiments
    • Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20, 777-785 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 777-785
    • Baggerly, K.A.1    Morris, J.S.2    Coombes, K.R.3
  • 16
    • 0035351419 scopus 로고    scopus 로고
    • Cell fingerprinting: An approach to classifying cells according to mass profiles of digests of protein extracts
    • Zhou X, Gonnet G, Hallett M, Munchbach M, Folkers G, James P. Cell fingerprinting: an approach to classifying cells according to mass profiles of digests of protein extracts. Proteomics 1, 683-690 (2001).
    • (2001) Proteomics , vol.1 , pp. 683-690
    • Zhou, X.1    Gonnet, G.2    Hallett, M.3    Munchbach, M.4    Folkers, G.5    James, P.6
  • 18
    • 0034054368 scopus 로고    scopus 로고
    • Cancer proteomics: From identification of novel markers to creation of artificial learning models for tumor classification
    • Alaiya AA, Franzen B, Auer G, Linder S. Cancer proteomics: from identification of novel markers to creation of artificial learning models for tumor classification. Electrophoresis 21, 1210-1217 (2000).
    • (2000) Electrophoresis , vol.21 , pp. 1210-1217
    • Alaiya, A.A.1    Franzen, B.2    Auer, G.3    Linder, S.4
  • 19
    • 0028804205 scopus 로고
    • Lung tumor cells: A multivariate approach to cell classification using two dimensional protein pattern
    • Schmid HR, Schmitter D, Blumer P, Miller M, Vonderschmitt D. Lung tumor cells: a multivariate approach to cell classification using two dimensional protein pattern. Electrophoresis 16, 1961-1968 (1995).
    • (1995) Electrophoresis , vol.16 , pp. 1961-1968
    • Schmid, H.R.1    Schmitter, D.2    Blumer, P.3    Miller, M.4    Vonderschmitt, D.5
  • 20
    • 4444234496 scopus 로고    scopus 로고
    • Data mining techniques for cancer detection using serum proteomic profiling
    • Li L, Hang H, Gong J et al. Data mining techniques for cancer detection using serum proteomic profiling. Artif. Intell. Med. 32, 71-83 (2004).
    • (2004) Artif. Intell. Med. , vol.32 , pp. 71-83
    • Li, L.1    Hang, H.2    Gong, J.3
  • 21
    • 0035491167 scopus 로고    scopus 로고
    • Proteomic approaches to biomarker discovery in prostate and bladder cancers
    • Adam BL, Vlahou A, Semmes OJ, Wright GL. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 1, 1264-1270 (2001).
    • (2001) Proteomics , vol.1 , pp. 1264-1270
    • Adam, B.L.1    Vlahou, A.2    Semmes, O.J.3    Wright, G.L.4
  • 22
    • 0036324715 scopus 로고    scopus 로고
    • Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer
    • Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem. 48, 1296-1304 (2002).
    • (2002) Clin. Chem. , vol.48 , pp. 1296-1304
    • Li, J.1    Zhang, Z.2    Rosenzweig, J.3    Wang, Y.Y.4    Chan, D.W.5
  • 23
    • 0027521696 scopus 로고
    • Evaluation of multiple serum markers in patients with Stage I ovarian cancer
    • Woolas RP, Xu FJ, Jacobs IJ et al. Evaluation of multiple serum markers in patients with Stage I ovarian cancer. J. Natl Cancer Inst. 85, 1748-1751 (1993).
    • (1993) J. Natl Cancer Inst. , vol.85 , pp. 1748-1751
    • Woolas, R.P.1    Xu, F.J.2    Jacobs, I.J.3
  • 24
    • 0142027764 scopus 로고    scopus 로고
    • Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis
    • Kozak KR, Amneus MW, Pusey SM et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc. Natl Acad. Sci. USA 100, 12343-12348 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 12343-12348
    • Kozak, K.R.1    Amneus, M.W.2    Pusey, S.M.3
  • 25
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin EF Jr, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572-577 (2002).
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin Jr., E.F.1    Ardekani, A.M.2    Hitt, B.A.3
  • 26
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam BL, QuY, Davis JW et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62, 3609-3614 (2002).
    • (2002) Cancer Res. , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3
  • 27
    • 0036791428 scopus 로고    scopus 로고
    • Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
    • Qu Y, Adam BL, Yasui Y et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 48, 1835-1843 (2002).
    • (2002) Clin. Chem. , vol.48 , pp. 1835-1843
    • Qu, Y.1    Adam, B.L.2    Yasui, Y.3
  • 28
    • 18344396961 scopus 로고    scopus 로고
    • An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers
    • Ball G, Mian S, Holding F et al. An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18, 395-404 (2002).
    • (2002) Bioinformatics , vol.18 , pp. 395-404
    • Ball, G.1    Mian, S.2    Holding, F.3
  • 29
    • 0242417513 scopus 로고    scopus 로고
    • Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes
    • Poon TCW, Yip T, Chan ATC et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin. Chem. 49, 752-760 (2003).
    • (2003) Clin. Chem. , vol.49 , pp. 752-760
    • Poon, T.C.W.1    Yip, T.2    Chan, A.T.C.3
  • 30
    • 0037106541 scopus 로고    scopus 로고
    • Density of points clustering, application to transcriptomic data analysis
    • Wicker N, Dembele D, Raffelsberger W, Poch O. Density of points clustering, application to transcriptomic data analysis. Nucleic Acids Res. 30, 3992-4000 (2002).
    • (2002) Nucleic Acids Res. , vol.30 , pp. 3992-4000
    • Wicker, N.1    Dembele, D.2    Raffelsberger, W.3    Poch, O.4
  • 31
    • 0032116996 scopus 로고    scopus 로고
    • Informational complexity criteria for regression models
    • Bozdogan H, Haughton DMA. Informational complexity criteria for regression models. Comp. Stat. Data Anal. 28, 51-76 (1998).
    • (1998) Comp. Stat. Data Anal. , vol.28 , pp. 51-76
    • Bozdogan, H.1    Haughton, D.M.A.2
  • 32
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike H. Factor analysis and AIC. Psychometrika 52, 317-332 (1987).
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 33
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 34
    • 0002356276 scopus 로고
    • Choosing the number of component clusters in the mixture model using a new informational complexity criterion of the inverse fisher information matrix
    • Opitz O, Lausen B, Klar R (Eds), Springer-Verlag
    • Bozdogan H. Choosing the number of component clusters in the mixture model using a new informational complexity criterion of the inverse fisher information matrix. In: Information and Classification. Opitz O, Lausen B, Klar R (Eds), Springer-Verlag, 40-54 (1993).
    • (1993) Information and Classification , pp. 40-54
    • Bozdogan, H.1
  • 35
    • 0036023414 scopus 로고    scopus 로고
    • Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry
    • Cazares LH, Adam BL, Ward MD et al. Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin. Cancer Res. 8, 2541-2552 (2002).
    • (2002) Clin. Cancer Res. , vol.8 , pp. 2541-2552
    • Cazares, L.H.1    Adam, B.L.2    Ward, M.D.3
  • 37
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19, 1636-1643 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3
  • 38
    • 10244279272 scopus 로고    scopus 로고
    • Sample classification from protein mass spectrometry by peak probability contrasts
    • Tibshirani R, Hastie T, Narasimhan B et al. Sample classification from protein mass spectrometry by peak probability contrasts. Bioinformatics 20, 3034-3044 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 3034-3044
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3
  • 39
    • 33745571364 scopus 로고    scopus 로고
    • Performing trend analysis on spatio-temporal proteomics data using differential ratio data mining
    • Malone J, McGarry K, Bowerman C. Performing trend analysis on spatio-temporal proteomics data using differential ratio data mining. Proc. 6th EPSRC PREP Confer. (2004). The only paper that proposes the use of spatiotemporal proteomics rather than analyzing proteomics data as cross-sectional data.
    • (2004) Proc. 6th EPSRC PREP Confer.
    • Malone, J.1    McGarry, K.2    Bowerman, C.3
  • 40
    • 0009873030 scopus 로고    scopus 로고
    • Mass spectroscopy as a discovery tool for identifying serum markers for prostate cancer
    • Hlavaty JJ, Partin AW, Kusinitz F et al. Mass spectroscopy as a discovery tool for identifying serum markers for prostate cancer. Clin. Chem. 47, 1924-1926 (2001).
    • (2001) Clin. Chem. , vol.47 , pp. 1924-1926
    • Hlavaty, J.J.1    Partin, A.W.2    Kusinitz, F.3
  • 41
    • 0035383745 scopus 로고    scopus 로고
    • Detection of early stage cancer by serum protein analysis
    • Watkins B, Szaro R, Ball S et al. Detection of early stage cancer by serum protein analysis. Am. Laboratory 32-36 (2001).
    • (2001) Am. Laboratory , pp. 32-36
    • Watkins, B.1    Szaro, R.2    Ball, S.3
  • 42
    • 0037029709 scopus 로고    scopus 로고
    • Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer
    • Sauter ER, Zhu W, Fan X-J, Wassell RP, Chervoneva I, Bois GCD. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br. J. Cancer 86, 1440-1443 (2002).
    • (2002) Br. J. Cancer , vol.86 , pp. 1440-1443
    • Sauter, E.R.1    Zhu, W.2    Fan, X.-J.3    Wassell, R.P.4    Chervoneva, I.5    Bois, G.C.D.6
  • 44
    • 0035394771 scopus 로고    scopus 로고
    • SPINE: An integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics, life sciences
    • Bertone P, Kluger Y, Lan N et al. SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics, life sciences. Nucleic Acids Res. 29, 2884-2898 (2001).
    • (2001) Nucleic Acids Res. , vol.29 , pp. 2884-2898
    • Bertone, P.1    Kluger, Y.2    Lan, N.3
  • 45
    • 18744411077 scopus 로고    scopus 로고
    • Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform
    • Coombes KR, Tsavachidis S, Morris J, Baggerly KA, Hung M, Kuerer HM. Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 5, 4107-4117 (2005). Discusses a similar method of denoising and clusterin spectrum data using the wavelet method (borrowed from engineering).
    • (2005) Proteomics , vol.5 , pp. 4107-4117
    • Coombes, K.R.1    Tsavachidis, S.2    Morris, J.3    Baggerly, K.A.4    Hung, M.5    Kuerer, H.M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.