메뉴 건너뛰기




Volumn 2005, Issue , 2005, Pages 310-321

Robust and accurate cancer classification with gene expression profiling

Author keywords

[No Author keywords available]

Indexed keywords

CANCER CLASSIFICATION; GENE EXPRESSION PROFILING; LINEAR DISCRIMINANT ANALYSIS (LDA); SUPPORT VECTOR MACHINES;

EID: 33745495816     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CSB.2005.49     Document Type: Conference Paper
Times cited : (20)

References (47)
  • 6
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • T. H. Bø and I. Jonassen. New feature subset selection procedures for classification of expression profiles. Genome Biology, 3(4):1-11, 2002.
    • (2002) Genome Biology , vol.3 , Issue.4 , pp. 1-11
    • Bø, T.H.1    Jonassen, I.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 33(10):1713-1726, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1713-1726
    • Chen, L.-F.1    Liao, H.-Y.M.2    Ko, M.-T.3    Lin, J.-C.4    Yu, G.-J.5
  • 9
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • M. Dettling. BagBoosting for tumor classification with gene expression data. Bioinformatics, 20(18):3583-3593, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3583-3593
    • Dettling, M.1
  • 10
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • M. Dettling and P. Bühlmann. Boosting for tumor classification with gene expression data. Bioinformatics, 19(9):1061-1069, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Bühlmann, P.2
  • 11
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457):77-87, 2002.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 12
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Annual of Eugenics, 7:179-188, 1936.
    • (1936) Annual of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 13
    • 0003909532 scopus 로고
    • Discriminatory analysis, nonparametric discrimination: Consistency properties
    • USAF School of Aviation Medicine, Randolph Field, TX
    • E. Fix and J. Hodges. Discriminatory analysis, nonparametric discrimination: consistency properties. Technical report, USAF School of Aviation Medicine, Randolph Field, TX, 1951.
    • (1951) Technical Report
    • Fix, E.1    Hodges, J.2
  • 14
    • 0015395891 scopus 로고
    • Considerations of sample and feature size
    • D. H. Foley. Considerations of sample and feature size. IEEE Transactions on Information Theory, 18(5):618-626, 1972.
    • (1972) IEEE Transactions on Information Theory , vol.18 , Issue.5 , pp. 618-626
    • Foley, D.H.1
  • 17
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906-914, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 18
    • 0004236492 scopus 로고    scopus 로고
    • The Johns Hopkins University Press, Baltimore, MD, 3rd edition
    • G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 3rd edition, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 22
    • 0025792756 scopus 로고
    • Optimal discriminant plane for a small number of samples and design method of classifier on the plane
    • Z.-Q. Hong and J.-Y. Yang. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 24(4):317-324, 1991.
    • (1991) Pattern Recognition , vol.24 , Issue.4 , pp. 317-324
    • Hong, Z.-Q.1    Yang, J.-Y.2
  • 24
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • P. Krishnaiah and L. Kanal, editors. Amsterdam, North Holland
    • A. K. Jain and B. Chandrasekaran. Dimensionality and sample size considerations in pattern recognition practice. In P. Krishnaiah and L. Kanal, editors, Handbook of Statistics, volume 2, pages 835-855. Amsterdam, North Holland, 1982.
    • (1982) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, B.2
  • 28
  • 29
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinfomatics, 17(12):1131-1142, 2001.
    • (2001) Bioinfomatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 30
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20(15):2429-2437, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 35
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • S. J. Raudys and A. K. Jain. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):252-264, 1991.
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 36
    • 0019020917 scopus 로고
    • On dimensionality, sample size, classification error, and complexity of classification algorithms in pattern recognition
    • S. J. Raudys and V. Pikelis. On dimensionality, sample size, classification error, and complexity of classification algorithms in pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:243-251, 1980.
    • (1980) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.2 , pp. 243-251
    • Raudys, S.J.1    Pikelis, V.2
  • 39
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • R. L. Somorjai, B. Dolenko, and R. Baumgartner. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics, 19(12):1484-1491, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 40
    • 0042388208 scopus 로고    scopus 로고
    • RankGene: Identification of diagnostic genes based on expression data
    • Y. Su, T. M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif. RankGene: identification of diagnostic genes based on expression data. Bioinformatics, 19(12): 1578-1579, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1578-1579
    • Su, Y.1    Murali, T.M.2    Pavlovic, V.3    Schaffer, M.4    Kasif, S.5
  • 41
    • 0022752022 scopus 로고
    • Image classification by the foley-sammon transform
    • Q. Tian, M. Barbero, Z.-H. Gu, and S. H. Lee. Image classification by the foley-sammon transform. Optical Engineering, 25(7): 834-840, 1986.
    • (1986) Optical Engineering , vol.25 , Issue.7 , pp. 834-840
    • Tian, Q.1    Barbero, M.2    Gu, Z.-H.3    Lee, S.H.4
  • 46
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data -with application to face recognition
    • H. Yu and J. Yang. A direct LDA algorithm for high-dimensional data -with application to face recognition. Pattern Recognition, 34(10):2067-2070, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 47
    • 0037388166 scopus 로고    scopus 로고
    • Cell and tumor classification using gene expression data: Construction of forests
    • H. Zhang, C.-Y. Yu, and B. Singer. Cell and tumor classification using gene expression data: construction of forests. Proceedings of the National Academy of Sciences of USA, 100(7):4168-4172, 2003.
    • (2003) Proceedings of the National Academy of Sciences of USA , vol.100 , Issue.7 , pp. 4168-4172
    • Zhang, H.1    Yu, C.-Y.2    Singer, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.