-
1
-
-
23144439033
-
Markov chain Monte Carlo using trees-based priors on model structure
-
J. Breese and D. Koller, editors
-
N. Angelopoulos and J. Cussens. Markov chain Monte Carlo using trees-based priors on model structure. In J. Breese and D. Koller, editors, Proc. of the Conf. on Uncertainty in AI, pages 16-23, 2001.
-
(2001)
Proc. of the Conf. on Uncertainty in AI
, pp. 16-23
-
-
Angelopoulos, N.1
Cussens, J.2
-
2
-
-
0002013121
-
A transformational characterization of equivalent Bayesian networks
-
P. Besnard and S. Hanks, editors
-
D. Chickering. A transformational characterization of equivalent Bayesian networks. In P. Besnard and S. Hanks, editors, Proc. of the Conf. on Uncertainty in AI, pages 87-98, 1995.
-
(1995)
Proc. of the Conf. on Uncertainty in AI
, pp. 87-98
-
-
Chickering, D.1
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical Society, Series B, 34:1-38, 1977.
-
(1977)
J. of the Royal Statistical Society, Series B
, vol.34
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
5
-
-
0000130823
-
A fast procedure for model search in multidimensional contingency tables
-
D. Edwards and T. Havránek. A fast procedure for model search in multidimensional contingency tables. Biometrika, 72(2):339-351, 1985.
-
(1985)
Biometrika
, vol.72
, Issue.2
, pp. 339-351
-
-
Edwards, D.1
Havránek, T.2
-
6
-
-
0000854197
-
The Bayesian structural EM algorithm
-
G. F. Cooper and S. Moral, editors
-
N. Friedman. The Bayesian structural EM algorithm. In G. F. Cooper and S. Moral, editors, Proc. of the Conf. on Uncertainty in AI, pages 129-138, 1998.
-
(1998)
Proc. of the Conf. on Uncertainty in AI
, pp. 129-138
-
-
Friedman, N.1
-
7
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images
-
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(6), 1984.
-
(1984)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.6
, Issue.6
-
-
Geman, S.1
Geman, D.2
-
8
-
-
0037266163
-
Improving Markov chain Monte Carlo model search for data mining
-
P. Giudici and R. Castelo. Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50(1):127-158, 2003.
-
(2003)
Machine Learning
, vol.50
, Issue.1
, pp. 127-158
-
-
Giudici, P.1
Castelo, R.2
-
9
-
-
0001099335
-
Decomposable graphical Gaussian model determination
-
P. Giudici and P. Green. Decomposable graphical gaussian model determination. Biometrika, 86(4): 785-801, 1999.
-
(1999)
Biometrika
, vol.86
, Issue.4
, pp. 785-801
-
-
Giudici, P.1
Green, P.2
-
10
-
-
0002811779
-
Improved learning of Bayesian networks
-
D. Koller and J. Breese, editors
-
T. Kocka and R. Castelo. Improved learning of Bayesian networks. In D. Koller and J. Breese, editors, Proc. of the Conf. on Uncertainty in AI, pages 269-276, 2001.
-
(2001)
Proc. of the Conf. on Uncertainty in AI
, pp. 269-276
-
-
Kocka, T.1
Castelo, R.2
-
11
-
-
58149210716
-
The EM algorithm for graphical association models with missing data
-
S. L. Lauritzen. The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19:191-201, 1995.
-
(1995)
Computational Statistics and Data Analysis
, vol.19
, pp. 191-201
-
-
Lauritzen, S.L.1
-
13
-
-
21844520724
-
Bayesian graphical models for discrete data
-
D. Madigan and J. York. Bayesian graphical models for discrete data. Intl. Statistical Review, 63:215-232, 1995.
-
(1995)
Intl. Statistical Review
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
-
15
-
-
0002343164
-
Learning Bayesian networks from incomplete databases
-
D. Geiger and P. Shenoy, editors
-
M. Ramoni and P. Sebastiani. Learning Bayesian networks from incomplete databases. In D. Geiger and P. Shenoy, editors, Proc. of the Conf. on Uncertainty in AI, pages 401-408, 1997.
-
(1997)
Proc. of the Conf. on Uncertainty in AI
, pp. 401-408
-
-
Ramoni, M.1
Sebastiani, P.2
-
16
-
-
0043198674
-
Robust learning with missing data
-
M. Ramoni and P. Sebastiani. Robust learning with missing data. Machine Learning, 45(2):147-170, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.2
, pp. 147-170
-
-
Ramoni, M.1
Sebastiani, P.2
-
17
-
-
84986980101
-
Sequential updating of conditional probabilities on directed graphical structures
-
D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20:579-605, 1990.
-
(1990)
Networks
, vol.20
, pp. 579-605
-
-
Spiegelhalter, D.J.1
Lauritzen, S.L.2
-
18
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
M. Tanner and W. Wong. The calculation of posterior distributions by data augmentation. J. of the Am. Stat. Assoc., 82(398):528-540, 1987.
-
(1987)
J. of the Am. Stat. Assoc.
, vol.82
, Issue.398
, pp. 528-540
-
-
Tanner, M.1
Wong, W.2
|