메뉴 건너뛰기




Volumn , Issue , 2005, Pages 301-308

Learning Bayesian network models from incomplete data using importance sampling

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN APPROACHES; CORONARY HEART DISEASE; EXACT INFERENCE; IMPUTATION METHODS; INCOMPLETE DATA; LEARNING BAYESIAN NETWORKS; MISSING DATA; OBSERVED DATA; POSTERIOR DISTRIBUTIONS; PREDICTIVE DISTRIBUTIONS; RISK FACTORS;

EID: 33745454493     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (18)
  • 1
    • 23144439033 scopus 로고    scopus 로고
    • Markov chain Monte Carlo using trees-based priors on model structure
    • J. Breese and D. Koller, editors
    • N. Angelopoulos and J. Cussens. Markov chain Monte Carlo using trees-based priors on model structure. In J. Breese and D. Koller, editors, Proc. of the Conf. on Uncertainty in AI, pages 16-23, 2001.
    • (2001) Proc. of the Conf. on Uncertainty in AI , pp. 16-23
    • Angelopoulos, N.1    Cussens, J.2
  • 2
    • 0002013121 scopus 로고
    • A transformational characterization of equivalent Bayesian networks
    • P. Besnard and S. Hanks, editors
    • D. Chickering. A transformational characterization of equivalent Bayesian networks. In P. Besnard and S. Hanks, editors, Proc. of the Conf. on Uncertainty in AI, pages 87-98, 1995.
    • (1995) Proc. of the Conf. on Uncertainty in AI , pp. 87-98
    • Chickering, D.1
  • 3
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-347, 1992.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 5
    • 0000130823 scopus 로고
    • A fast procedure for model search in multidimensional contingency tables
    • D. Edwards and T. Havránek. A fast procedure for model search in multidimensional contingency tables. Biometrika, 72(2):339-351, 1985.
    • (1985) Biometrika , vol.72 , Issue.2 , pp. 339-351
    • Edwards, D.1    Havránek, T.2
  • 6
    • 0000854197 scopus 로고    scopus 로고
    • The Bayesian structural EM algorithm
    • G. F. Cooper and S. Moral, editors
    • N. Friedman. The Bayesian structural EM algorithm. In G. F. Cooper and S. Moral, editors, Proc. of the Conf. on Uncertainty in AI, pages 129-138, 1998.
    • (1998) Proc. of the Conf. on Uncertainty in AI , pp. 129-138
    • Friedman, N.1
  • 8
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • P. Giudici and R. Castelo. Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50(1):127-158, 2003.
    • (2003) Machine Learning , vol.50 , Issue.1 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 9
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • P. Giudici and P. Green. Decomposable graphical gaussian model determination. Biometrika, 86(4): 785-801, 1999.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 785-801
    • Giudici, P.1    Green, P.2
  • 10
    • 0002811779 scopus 로고    scopus 로고
    • Improved learning of Bayesian networks
    • D. Koller and J. Breese, editors
    • T. Kocka and R. Castelo. Improved learning of Bayesian networks. In D. Koller and J. Breese, editors, Proc. of the Conf. on Uncertainty in AI, pages 269-276, 2001.
    • (2001) Proc. of the Conf. on Uncertainty in AI , pp. 269-276
    • Kocka, T.1    Castelo, R.2
  • 11
    • 58149210716 scopus 로고
    • The EM algorithm for graphical association models with missing data
    • S. L. Lauritzen. The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19:191-201, 1995.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 13
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • D. Madigan and J. York. Bayesian graphical models for discrete data. Intl. Statistical Review, 63:215-232, 1995.
    • (1995) Intl. Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 15
    • 0002343164 scopus 로고    scopus 로고
    • Learning Bayesian networks from incomplete databases
    • D. Geiger and P. Shenoy, editors
    • M. Ramoni and P. Sebastiani. Learning Bayesian networks from incomplete databases. In D. Geiger and P. Shenoy, editors, Proc. of the Conf. on Uncertainty in AI, pages 401-408, 1997.
    • (1997) Proc. of the Conf. on Uncertainty in AI , pp. 401-408
    • Ramoni, M.1    Sebastiani, P.2
  • 16
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • M. Ramoni and P. Sebastiani. Robust learning with missing data. Machine Learning, 45(2):147-170, 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 17
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20:579-605, 1990.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 18
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • M. Tanner and W. Wong. The calculation of posterior distributions by data augmentation. J. of the Am. Stat. Assoc., 82(398):528-540, 1987.
    • (1987) J. of the Am. Stat. Assoc. , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.1    Wong, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.