메뉴 건너뛰기




Volumn 13, Issue 4, 2005, Pages 501-525

Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions

Author keywords

dominance; Computational effort; Convergence measure; Evolutionary algorithms; Genetic algorithms; Hyper volume metric; Multi objective optimization; Pareto optimal solutions; Sparsity measure

Indexed keywords

ALGORITHM; ARTICLE; COMPARATIVE STUDY; COMPUTER SIMULATION; EVOLUTION; THEORETICAL MODEL; TIME;

EID: 33745454026     PISSN: 10636560     EISSN: 15309304     Source Type: Journal    
DOI: 10.1162/106365605774666895     Document Type: Article
Times cited : (597)

References (24)
  • 3
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation Journal, 7(3):205-230.
    • (1999) Evolutionary Computation Journal , vol.7 , Issue.3 , pp. 205-230
    • Deb, K.1
  • 5
    • 0000991259 scopus 로고
    • Simulated binary crossover for continuous search space
    • Deb, K. and Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex Systems, 9(2):115-148.
    • (1995) Complex Systems , vol.9 , Issue.2 , pp. 115-148
    • Deb, K.1    Agrawal, R.B.2
  • 7
    • 0040445957 scopus 로고    scopus 로고
    • A combined genetic adaptive search (GeneAS) for engineering design
    • Deb, K. and Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26(4):30-45.
    • (1996) Computer Science and Informatics , vol.26 , Issue.4 , pp. 30-45
    • Deb, K.1    Goyal, M.2
  • 13
    • 0003688852 scopus 로고    scopus 로고
    • Evaluating the quality of approximations to the non-dominated set
    • Lyngby: Institute of Mathematical Modelling, Technical University of Denmark
    • Hansen, M. P. and Jaskiewicz, A. (1998). Evaluating the quality of approximations to the non-dominated set. Technical Report IMM-REP-1998-7, Lyngby: Institute of Mathematical Modelling, Technical University of Denmark.
    • (1998) Technical Report , vol.IMM-REP-1998-7
    • Hansen, M.P.1    Jaskiewicz, A.2
  • 15
    • 77958151592 scopus 로고    scopus 로고
    • One metrics for comparing nondominated sets
    • Piscataway, NJ: IEEE Press
    • Knowles, J. D. and Corne, D. (2002). One metrics for comparing nondominated sets. In Congress on Evolutionary Computation (CEC-2002), pages 711-716. Piscataway, NJ: IEEE Press.
    • (2002) Congress on Evolutionary Computation (CEC-2002) , pp. 711-716
    • Knowles, J.D.1    Corne, D.2
  • 16
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the non-dominated front using the Pareto archived evolution strategy
    • Knowles, J. D. and Corne, D. W. (2000). Approximating the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation Journal, 8(2):149-172.
    • (2000) Evolutionary Computation Journal , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 17
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multi-objective optimization
    • Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 10(3):263-282.
    • (2002) Evolutionary Computation , vol.10 , Issue.3 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 19
    • 0000852513 scopus 로고
    • Multi-objective function optimization using non-dominated sorting genetic algorithms
    • Srinivas, N. and Deb, K. (1994). Multi-objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation Journal, 2(3):221-248.
    • (1994) Evolutionary Computation Journal , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 20
    • 4344699771 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation Journal, 8(2):125-148.
    • (2000) Evolutionary Computation Journal , vol.8 , Issue.2 , pp. 125-148
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 22
    • 2942547409 scopus 로고    scopus 로고
    • SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
    • Giannakoglou, K. C., Tsahalis, D. T., Périaux, J., Papailiou, K. D., and Fogarty, T., editors, Athens, Greece. International Center for Numerical Methods in Engineering (Cmine)
    • Zitzler, E., Laumanns, M., and Thiele, L. (2001b). SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In Giannakoglou, K. C., Tsahalis, D. T., Périaux, J., Papailiou, K. D., and Fogarty, T., editors, Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pages 95-100, Athens, Greece. International Center for Numerical Methods in Engineering (Cmine).
    • (2001) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems , pp. 95-100
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 23
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257-271.
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.