메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 589-593

Personalized knowledge discovery: Mining novel association rules from text

Author keywords

Association Rule Mining; Interestingness; Novelty; Personalization; Text Mining

Indexed keywords

INFORMATION MANAGEMENT; INFORMATION RETRIEVAL; KNOWLEDGE ENGINEERING; SEMANTICS;

EID: 33745435611     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972764.66     Document Type: Conference Paper
Times cited : (10)

References (15)
  • 3
    • 84867919822 scopus 로고
    • Transformation-based error-driven learning and natural language processing: A case study in part of speech tagging
    • E. Brill. Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging. Computational Linguistics, 1995.
    • (1995) Computational Linguistics
    • Brill, E.1
  • 8
    • 78149338936 scopus 로고    scopus 로고
    • Analyzing the interestingness of association rules from the temporal dimension
    • Silicon Valley, CA
    • B. Liu, Y. Ma and R. Lee Analyzing the interestingness of association rules from the temporal dimension. IEEE International Conference on Data Mining, Silicon Valley, CA, 2001.
    • (2001) IEEE International Conference on Data Mining
    • Liu, B.1    Ma, Y.2    Lee, R.3
  • 10
    • 0033345672 scopus 로고    scopus 로고
    • Unexpectedness as a measure of interestingness in knowledge discovery
    • Elsevier Science
    • B. Padmanabhan and A. Tuzhilin Unexpectedness as a measure of interestingness in knowledge discovery. Decision Support Systems, 27:303-318, Elsevier Science, 1999.
    • (1999) Decision Support Systems , vol.27 , pp. 303-318
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 14
    • 1242308945 scopus 로고    scopus 로고
    • Selecting the right objective measure for association analysis
    • P. Tan, V. Kumar and J. Srivastava. Selecting the right objective measure for association analysis. Information Systems, 29(4):293-313, 2004.
    • (2004) Information Systems , vol.29 , Issue.4 , pp. 293-313
    • Tan, P.1    Kumar, V.2    Srivastava, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.