메뉴 건너뛰기




Volumn 22, Issue 4, 2006, Pages 403-418

Setup error adjustment: Sensitivity analysis and a new MCMC control rule

Author keywords

Bayesian hierarchical models; Markov chain Monte Carlo; Random effects model; Setup adjustment; Statistical quality control

Indexed keywords

BAYESIAN HIERARCHICAL MODELS; EXPONENTIALLY-WEIGHTED MOVING AVERAGE (EWMA) CONTROLLER; MARKOV CHAIN MONTE CARLO (MCMC); RANDOM EFFECTS MODEL; SETUP ADJUSTMENT;

EID: 33745411139     PISSN: 07488017     EISSN: 10991638     Source Type: Journal    
DOI: 10.1002/qre.718     Document Type: Review
Times cited : (10)

References (17)
  • 1
    • 0020830912 scopus 로고
    • An optimum procedure for setting machines or adjusting processes
    • Grubbs FE. An optimum procedure for setting machines or adjusting processes. Journal of Quality Technology 1983; 15(4):186-189.
    • (1983) Journal of Quality Technology , vol.15 , Issue.4 , pp. 186-189
    • Grubbs, F.E.1
  • 2
    • 33745366962 scopus 로고
    • Originally printed; July
    • (Originally printed in Industrial Quality Control 1954; July.)
    • (1954) Industrial Quality Control
  • 3
    • 0031704628 scopus 로고    scopus 로고
    • The harmonic rule for process setup adjustment with quadratic loss
    • Trietsch D. The harmonic rule for process setup adjustment with quadratic loss. Journal of Quality Technology 1998; 30(1):75-84.
    • (1998) Journal of Quality Technology , vol.30 , Issue.1 , pp. 75-84
    • Trietsch, D.1
  • 7
    • 3442892330 scopus 로고    scopus 로고
    • A sequential Markov chain Monte Carlo approach to setup adjustment of a process over a set of lots
    • Colosimo BM, Del Castillo E, Pan R. A sequential Markov chain Monte Carlo approach to setup adjustment of a process over a set of lots. Journal of Applied Statistics 2004; 31(5):499-520.
    • (2004) Journal of Applied Statistics , vol.31 , Issue.5 , pp. 499-520
    • Colosimo, B.M.1    Del Castillo, E.2    Pan, R.3
  • 13
    • 0043096621 scopus 로고    scopus 로고
    • Assessing convergence of Markov chain Monte Carlo algorithms
    • Brooks SP, Roberts GO. Assessing convergence of Markov chain Monte Carlo algorithms. Statistics and Computing 1998; 8:319-335.
    • (1998) Statistics and Computing , vol.8 , pp. 319-335
    • Brooks, S.P.1    Roberts, G.O.2
  • 15
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • Gilks WR, Richardson S, Spiegelhalter DJ (eds.). Chapman and Hall: London
    • Oelman A. Inference and monitoring convergence. Markov Chain Monte Carlo in Practice, Gilks WR, Richardson S, Spiegelhalter DJ (eds.). Chapman and Hall: London, 1996; 131-140.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 131-140
    • Oelman, A.1
  • 16
    • 0003030680 scopus 로고    scopus 로고
    • Implementing MCMC
    • Gilks WR, Richardson S, Spiegelhalter DJ (eds.). Chapman and Hall: London
    • Raftery AE, Lewis SM. Implementing MCMC. Markov Chain Monte Carlo in Practice, Gilks WR, Richardson S, Spiegelhalter DJ (eds.). Chapman and Hall: London, 1996; 115-130.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 115-130
    • Raftery, A.E.1    Lewis, S.M.2
  • 17
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin D. Inference from iterative simulation using multiple sequences. Statistical Science 1992; 7:457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.