메뉴 건너뛰기




Volumn 3745 LNBI, Issue , 2005, Pages 137-148

Hybridizing sparse component analysis with genetic algorithms for blind source separation

Author keywords

[No Author keywords available]

Indexed keywords

BLIND SOURCE SEPARATION; COMPUTER AIDED SOFTWARE ENGINEERING; COMPUTER SCIENCE; FUNCTIONS; INFORMATION TECHNOLOGY; PROBLEM SOLVING;

EID: 33745326586     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11573067_15     Document Type: Conference Paper
Times cited : (7)

References (4)
  • 1
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 40:788-791, 1999.
    • (1999) Nature , vol.40 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 2
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P.O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 3
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Transactions on Neuronal Networks, 10(3), 626-634, 1999
    • (1999) IEEE Transactions on Neuronal Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.